Open Access
Issue |
ITM Web Conf.
Volume 32, 2020
International Conference on Automation, Computing and Communication 2020 (ICACC-2020)
|
|
---|---|---|
Article Number | 03010 | |
Number of page(s) | 7 | |
Section | Computing | |
DOI | https://doi.org/10.1051/itmconf/20203203010 | |
Published online | 29 July 2020 |
- H. Demirhan, Z. Renwick, Missing value imputation for short to mid-term horizontal solar irradiance data. Appl Energy, vol. 225, pp. 998-1012 (2018). 10.1016/j.apenergy.2018.05.054. [Google Scholar]
- A. Mellit, A.M. Pavan, A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy. Solar Energy, vol. 84(5), pp. 807-821, (2010). 10.1016/j.solener.2010.02.006. [Google Scholar]
- S. Wu, C. Chang, S. Lee, Time Series Forecasting with Missing Values, 1st Int. Conf. Ind. Networks Intell. Syst., pp. 151-156, (2015). 10.4108/icst.iniscom.2015.258269. [Google Scholar]
- W. Shi et al., Effective prediction of missing data on Apache Spark over multivariable time series”, IEEE Trans. Big Data, vol. 6, pp. 57239-27248, (2017). 10.1109/TBDATA.2017.2719703. [Google Scholar]
- Yanjie Wei et al., Any-time Methods For Time-series Prediction With Missing Observations, IEEE International Congress on Big Data (BigData Congress), (2017). 10.1109/BigDataCongress.2017.62. [Google Scholar]
- M.O.D. Rizwan et al., A Novel Approach For Time Series Data Forecasting Based On Arima Model For Marine Fishes, International Conference on Algorithms, Methodology, Models and Applications in Emerging Technologies (ICAMMAET), (2017). 10.1109/ICAMMAET.2017.8186707. [Google Scholar]
- V. Layanun, S. Suksamosorn, J. Songsiri, Missing-data Imputation for Solar Irradiance Forecasting in Thailand. In: Proceedings of the SICE Annual Conference 2017 September 19-22, Kanazawa University, Kanazawa, Japan, (2017). 10.23919/SICE.2017.8105472. [Google Scholar]
- W.L. Junger, A.P. de Leon, Imputation of missing data in time series for air pollutants, Atmospheric Environment, vol. 102, pp. 96-104, (2015). 10.1016/j.atmosenv.2014.11.049. [Google Scholar]
- B. Amrouche, X. Pivert Le, Artificial neural network based daily local forecasting for global solar radiation. Appl Energy vol. 130, pp. 333-341 (2014) 10.1016/j.apenergy.2014.05.055. [Google Scholar]
- S.X. Chen, H.B. Gooi, M. Wang. Solar radiation forecast based on fuzzy logic and neural networks. Renew Energy, vol. 60, pp. 195-201 (2013). 10.1016/j.renene.2013.05.011. [Google Scholar]
- Z. Gao, W. Cheng, X. Qiu, L. Meng, A Missing Sensor Data Estimation Algorithm Based on Temporal and Spatial Correlation, International Journal of Distributed Sensor Networks, vol. 2015, pp. 1-10, (2015). 10.1155/2015/435391. [Google Scholar]
- Y. Guo, X. Song, D. Fang, An Efficient Missing Data Prediction Method Based on Kronecker Compressive Sensing in Multivariable Time Series.IEEE Trans, pp. 57239-57248 (2018). 0.1109/ACCESS.2018.2873414. [Google Scholar]
- M. David, L. Mazorra, P. Lauret, Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data. Int J Forecast, vol. 19(4), pp. 299-311 (2018). 10.1016/j.ijforecast.2018.02.003 . [Google Scholar]
- A. Oren, H. Elad, Z Assaf, Online time series prediction with missing data. In Proceedings of the 32nd International Conference on Machine Learning, vol. 37, pp. 2191-2199 (2015). [Google Scholar]
- S.A. Kalogirou, Artificial neural networks in renewable energy systems applications: a review. Renew Sustain Energy Rev, vol. 5(4), pp. 373-401 (2001). 10.1016/S1364-0321(01)00006-5. [Google Scholar]
- E. Akarslan, FO Hocaoglu. A novel adaptive approach for hourly solar radiation forecasting. Renew Energy, vol. 87, pp. 628-633 (2016). 10.1016/j.renene.2015.10.063. [Google Scholar]
- E. Koubli, D. Palmer, T. Betts, P. Rowley, R. Gottschalg, Inference of missing PV monitoring data using neural networks, 43rd IEEE Photovoltaic Specialists Conference, PVSC, Portland, pp. 1-6, (2016). 10.1109/PVSC.2016.7750305 . [Google Scholar]
- E. Koubli, D. Palmer, P. Rowley, R. Gottschalg. Inference of missing data in photovoltaic monitoring datasets, IET Renew. Power Gener., vol. 10(4), pp. 434-439, (2016). 10.1049/iet-rpg.2015.0355 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.