Open Access
Issue
ITM Web Conf.
Volume 32, 2020
International Conference on Automation, Computing and Communication 2020 (ICACC-2020)
Article Number 03014
Number of page(s) 5
Section Computing
DOI https://doi.org/10.1051/itmconf/20203203014
Published online 29 July 2020
  1. Feiyu Chen, Real-time Action Recognition Based on Human Skeleton in Video, Final Project of EECS-433 Pattern Recognition, Teacher: Prof. YingWu, https://github.com/felixchenfy/Data-Storage/blob/master/EECS-433-Pattern-Recognition/FeiyuChenReportEECS433.pdf [Google Scholar]
  2. R.C. Gonzalez and** R.E. Woods, Digital Image Processing, 3rd Edition, Prentice Hall, 2008, ISBN-13: 9780131687288. [Google Scholar]
  3. Z. Cao, T. Simon, S.-E. Wei, and** Y. Sheikh, Realtime multi-person 2d pose estimation using part affinity fields, in CVPR, 2017. [Google Scholar]
  4. Lillo, I., Soto, A., and Niebles, J. C. (2014). Discriminative hierarchical modeling of spatio-temporally composable human activities, in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Columbus, OH), 812819. [Google Scholar]
  5. Yang, W., Wang, Y., and Mori, G. (2010). Recognizing human actions from still images with latent poses, in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (San Francisco, CA), 20302037. [Google Scholar]
  6. Thurau, C., and Hlavac, V. (2008). Pose primitive based human action recognition in videos or still images, in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Anchorage, AK), 18. [Google Scholar]
  7. Tran, K.N., Kakadiaris, I.A., and Shah, S.K. (2012). Part-based motion descriptor image for human action recognition. Pattern Recognit. 45, 25622572. doi:10.1016/j.patcog.2011.12.028 [Google Scholar]
  8. An example of the skeleton representation obtained using the OpenPose library www.researchgate.com [Google Scholar]
  9. Z. Cao, T. Simon, S.-E. Wei, and** Y. Sheikh, Realtime multi-person 2d pose estimation using part affinity fields, in CVPR, 2017. [Google Scholar]
  10. Deep Neural Network for Image Classification www.datascience-enthusiast.com [Google Scholar]
  11. Sedai, S., Bennamoun, M., and Huynh, D.Q. (2013a). Discriminative fusion of shape and appearance features for human pose estimation. Pattern Recognit. 46, 32233237.doi:10.1016/j.patcog.2013.05.019 [Google Scholar]
  12. Rodriguez, M.D., Ahmed, J., and Shah, M. (2008). Action MACH: a spatio-temporal maximum average correlation height filter for action recognition, in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Anchorage,AK), 18. [Google Scholar]
  13. Chaitra B.H, Anupama H.S, Cauvery N.K “Human Action Recognition using Image Processing and Artificial Neural Networks” International Journal of Computer Applications (0975 8887) volume 80 No.9, October 2013 [Google Scholar]
  14. Maji, S., Bourdev, L.D., and Malik, J. (2011). Action recognition from a distributed representation of pose and appearance, in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Colorado Springs, CO), 31773184. [Google Scholar]
  15. L. Weilun, H. Jungong, and** P. With, Flexible human behavior analysis framework for video surveillance applications, Int. J. Digital Multimedia Broadcast., Vol. 2010, pp.920121-1920121-9, Jan. 2010. [Google Scholar]
  16. T. Kohonen, Self-Organizing Maps, Springer, Berlin, Heidelberg, 1995. [CrossRef] [Google Scholar]
  17. G. Strang, The discrete cosine transform, SIAM Review, Vol. 41, No. 1, pp.135-147, 1999. [Google Scholar]
  18. Sigal, L., Isard, M., Haussecker, H.W., and Black, M.J. (2012a). Loose-limbed people: estimating 3D human pose and motion using non-parametric belief propagation. Int. J. Comput. Vis. 98, 1548. doi:10.1007/s11263-011-0493-4 [Google Scholar]
  19. A tutorial on principal component analysis J Shlens - arXiv preprint arXiv:1404.1100, 2014 [Google Scholar]
  20. Classification of Knowledge Based Image using Decision Tree Algorithm Vadthe Narasimha, B. Satyanarayana, K. Krishnaiah, International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878,volume-8, issue-1C2, May 2019 [Google Scholar]
  21. RGBD Human Action Recognition using Multi-Features Combination and K-Nearest Neighbors Classification www.researchgate.net/publication/320804220 [Google Scholar]
  22. Human Action Recognition using SVM and KNN Classifiers International Journal of Innovations & Advancement in Computer Science IJIACS ISSN 2347 8616 volume 5, issue 8 August 2016 [Google Scholar]
  23. R. Poppe, A survey on vision-based human action recognition, Image and Vision Computing, vol. 28, pp. 976990, 2010. [Google Scholar]
  24. R. Messing, C. Pal, and** H. Kautz, Activity recognition using the velocity histories of tracked keypoints, in ICCV, 2009. [Google Scholar]
  25. 2017 CVPR: Quo vadis, action recognition? a new model and the kinetics dataset [Google Scholar]
  26. 2017 CVPR: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields 2007. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.