Open Access
Issue
ITM Web Conf.
Volume 32, 2020
International Conference on Automation, Computing and Communication 2020 (ICACC-2020)
Article Number 03046
Number of page(s) 5
Section Computing
DOI https://doi.org/10.1051/itmconf/20203203046
Published online 29 July 2020
  1. P. Cortez and A. Morais. A Data Mining Approach to Predict Forest Fires using Meteorological Data. In Proceedings of the 13th EPIA 2007 - Portuguese Conference on Artificial Intelligence, December, (2007), pp512-523 [Google Scholar]
  2. Perminov, Valeriy, Mathematical Modeling of Crown Forest Fire Spread. Open Journal of Forestry. 2. 17-22. 10.4236/ojf.2012.21003, (2012). [Google Scholar]
  3. Ozbayoglu, Murat & Bozer, Recep. Estimation of the Burned Area in Forest Fires Using Computational Intelligence Techniques. Procedia Computer Science. 12. (2012). 282-287. 10.1016/j.procs.2012.09.070. [Google Scholar]
  4. Agarwal, Jutshi & Cohen, Kelly & Kumar, Manish. (2013). Fuzzy Logic Based Real-Time Prediction Model for Wild-Land Forest Fires. AIAA Infotech at Aerospace (I at A) Conference. 10.2514/6.2013-5060. [Google Scholar]
  5. Artes, Tomas & Cencerrado, Andrés & Cortés, Ana & Margalef, Tomàs. Time aware genetic algorithm for forest fire propagation prediction: exploiting multi-core platforms: Time aware genetic algorithm for forest fire propagation prediction: exploiting multi-core platforms. Concurrency and Computation: Practice and Experience. 29. 10.1002/cpe.3837. (2016). [Google Scholar]
  6. Castelli, M.L. Vanneschi, And A. Popovic. 2015. Predicting Burned Areas of Forest Fires: An Artificial Intelligence Approach. Fire Ecology 11(1):106-118. [Google Scholar]
  7. Koza, J.R. Genetic Programming: on the programming of computers by means of natural selection. MIT Press, Cambridge, Massachusetts, USA. (1992) [Google Scholar]
  8. Koza, J.R. Human-competitive results produced by genetic programming. Genetic Programming and Evolvable Machines 11(3-4): 251-284. doi: 10.1007/s10710-010-9112-3, (2010) [Google Scholar]
  9. Castelli, M., S. Silva, and L. Vanneschi. 2014. A C++ framework for geometric semantic genetic programming. Genetic Programming and Evolvable Machines 15: 19.Castro, J., T. Figueiredo, F. Fonseca, J.P. Castro, S. Nobre, and L. Pires. (2010) [Google Scholar]
  10. Vanneschi, Leonardo & Castelli, Mauro & Manzoni, Luca & Silva, Sara. A New Implementation of Geometric Semantic GP and Its Application to Problems in Pharmacokinetics. 205-216. 10.1007/978-3-642-37207-0_18. (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.