Open Access
Issue |
ITM Web Conf.
Volume 34, 2020
International Conference on Applied Mathematics and Numerical Methods – third edition (ICAMNM 2020)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 13 | |
Section | Applied Mathematics and Numerical Methods | |
DOI | https://doi.org/10.1051/itmconf/20203402003 | |
Published online | 03 December 2020 |
- H. M. Antia, Numerical methods for scientists and engineers (Birkhauser, Basel, 2002) 864 pp. [Google Scholar]
- M. Bonne, Boundary integral equation methods for solids and fluids (John Wiley and Sons, New York, 1999) 412 pp. [Google Scholar]
- C.A. Brebbia, Boundary element techniques in engineering (Butterworths, London, 1980). [Google Scholar]
- C.A. Brebbia, J.C.F. Telles, L.C. Wobel, Boundary element theory and application in engineering (Springer-Verlag, Berlin, 1984) 478 pp. [Google Scholar]
- M. Buhmann, Radial Basis Functions: Theory and Implementations (Cambridge Monographs on Applied and Computational Mathematics, pp. I-Vi) (Cambridge University Press, 2003) 272 pp. [Google Scholar]
- L. Dragos¸, Metode matematice în aerodinamica˘ (Mathematical Methods in Aerodinamics) (Ed. Academiei Române, Bucharest, 2000) 560 pp. [Google Scholar]
- L. Dragos¸, Mecanica Fluidelor Vol.1 Teoria Generala˘, Fluidul Ideal Incompresibil (Fluid Mechanics Vol.1. General Theory, The Ideal Incompressible Fluid) (Ed. Academiei Române, Bucharest, 1999). [Google Scholar]
- G. E. Fasshauer Approximation Solution of PDE (Singapore, World Scientific Publisher, 2007) 520 pp. [Google Scholar]
- C. Franke, R. Schaback, Solving partial differential equations by collocation using radial basis functions, Applied Mathematics and Computation 93(1), 73-82 (July 1998). [CrossRef] [Google Scholar]
- E.A. Galperin, E.J. Kansa, Applications of Global Optimization and Radial Basis Functions to Numerical Solutions of Weakly Singular Volterra Integral Equations, Computers and Mathematics with Applications 43, 491-499 (2002). [CrossRef] [Google Scholar]
- L. Grecu, A Solution of the BIE of the Theory of the Infinite Span Airfoil in Subsonic Flow with Linear Boundary Elements, Analele Universita˘¸tii Bucures¸ti, Matematica˘ LII(2), 181-188 (2003). [Google Scholar]
- L. Grecu, Linear boundary elements for solving the nonsingular boundary integral equation of the fluid flow around obstacles, Acta universitatis Apulensis, Special Issue ICTAMI 2011, 501-512 (2011). [Google Scholar]
- L. Grecu, A solution of the boundary integral equation of the 2D fluid flow around bodies with quadratic isoparametric boundary elements, ROMAI J. 2(2), 81–87 (2006). [Google Scholar]
- L. Grecu, A solution with cubic boundary elements for the compressible fluid flow around obstacles, Boundary Value Problems 2013(78) (2013). [CrossRef] [Google Scholar]
- L. Grecu, An improved numerical solution of thesingular boundary integral equation of thecompressible fluid flow around obstacles using modified shape functions, Boundary Value Problems 2015(35) (2015). [CrossRef] [Google Scholar]
- R. L. Hardy, Multiquadric equations of topography and other irregular surfaces, Journal of Geophisical Reserach 76(8), 1905-1915 (1971). [CrossRef] [Google Scholar]
- R. L. Hardy, Theory and applications of the multiquadric-biharmonic method: 20 years of discovery, Computers and Mathematics with Applications 19(8-9), 163-208 (1990). [CrossRef] [Google Scholar]
- E. J. Kansa, Multiquadrics a scattered data approximation scheme with applications to computational fluid dynamics I: Surface approximations and partial derivative estimates, Computers and Mathematics with Applications 19(8-9), 127-145 (1990). [CrossRef] [Google Scholar]
- I. K. Lifanov, Singular integral equations and discrete vortices (VSP, Utrecht, The Netherlands, 1996) 475 pp. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.