Open Access
Issue
ITM Web Conf.
Volume 34, 2020
International Conference on Applied Mathematics and Numerical Methods – third edition (ICAMNM 2020)
Article Number 02009
Number of page(s) 12
Section Applied Mathematics and Numerical Methods
DOI https://doi.org/10.1051/itmconf/20203402009
Published online 03 December 2020
  1. R. J. Geider, H. L. Maclntyre, and T.M. Kana, A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature, Limnology and oceanography 43(4), 679-694 (1998). [CrossRef] [Google Scholar]
  2. S. Diehl, S. Berger, R. Ptacnik, and A. Wild, Phytoplankton, light, and nutrients in a gradient of mixing depths: field experiments Ecology 83, 399-411 (2002). [Google Scholar]
  3. P.J. Franks and J. S. Jaffe, Microscale variability in the distributions of large fluorescent particles observed in situ with a planar laser imaging fluorometer, Journal of Marine Systems 69, 254-270 (2008). [CrossRef] [Google Scholar]
  4. M.J. Doubell, H. Yamazaki, H. Li, and Y. Kokubu, An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems, Journal of plankton research 31, 1441-1452 (2009). [CrossRef] [Google Scholar]
  5. S. Mandal, C. Locke, M. Tanaka, and H. Yamazaki, Observations and models of highly intermittent phytoplankton distributions, PloS one 9, e94797 (2014). [CrossRef] [Google Scholar]
  6. S. Mandal, H. Homma, A. Priyadarshi, H. Burchard, S.L. Smith, K.W. Wirtz, and H. Yamazaki, A 1D physical-biological model of the impact of highly intermittent phytoplankton distributions, Journal of Plankton Research 38, 964-976 (2016). [CrossRef] [Google Scholar]
  7. S. Mandal, S.L. Smith, A. Priyadarshi, and H. Yamazaki, Micro-scale variability impacts the outcome of competition between different modelled size classes of phytoplankton, Frontiers in Marine Science 6(259) (2019). [CrossRef] [Google Scholar]
  8. S.L. Smith, S. Mandal, A. Priyadarshi, B. Chen, and H. Yamazaki, Modeling the combined effects of physiological flexibility and micro-scale variability for plankton ecosystem dynamics, In Encyclopedia of Ocean Sciences 5, 527-535 (2019). [CrossRef] [Google Scholar]
  9. P.J. Wallhead, A.P. Martin, and M.A. Srokosz, Spatially implicit plankton population models: transient spatial variability, Journal of Theoretical Biology 253, 405-423 (2008). [CrossRef] [Google Scholar]
  10. A. Stein, K. Gerstner, and H. Kreft, Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales, Ecology Letters 17, 866-880 (2014). [CrossRef] [Google Scholar]
  11. C.B. Woodson and S.Y. Litvin, Ocean fronts drive marine fishery production and biogeochemical cycling, Proceedings of the National Academy of Sciences 112, 1710-1715 (2015). [CrossRef] [Google Scholar]
  12. A. Priyadarshi, S. Mandal, S.L. Smith, and H. Yamazaki, Micro-scale variability enhances trophic transfer and potentially sustains biodiversity in plankton ecosystems, Journal of Theoretical Biology 412, 86-93 (2017). [CrossRef] [Google Scholar]
  13. A. Priyadarshi, S. L. Smith, S. Mandal, M. Tanaka, and H. Yamazaki, Micro-scale patchiness enhances trophic transfer efficiency and potential plankton biodiversity, Scientific Reports 9(1), 1-9 (2019). [Google Scholar]
  14. Z. Yang, X. Liu, M. Zhou, D. Ai, G. Wang, Y. Wang, ... and J.T. Lundholm, The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient, Scientific reports, 5(15723) (2015). [Google Scholar]
  15. A. Bar-Massada and E.M. Wood, The richness-heterogeneity relationship differs between heterogeneity measures within and among habitats, Ecography, 37(6), 528-535 (2014). [CrossRef] [Google Scholar]
  16. W.M. Kemp, M.T. Brooks, and R.R. Hood, Nutrient enrichment, habitat variability and trophic transfer efficiency in simple models of pelagic ecosystems, Marine Ecology Progress Series 223, 73-87 (2001). [CrossRef] [Google Scholar]
  17. A. Calbet, M.D. Agersted, S. Kaartvedt, M. Møhl, E. F. Møller, S. Enghoff-Poulsen, and D.E. Raitsos, Heterogeneous distribution of plankton within the mixed layer and its implications for bloom formation in tropical seas, Scientific Reports 5(11240) (2015). [Google Scholar]
  18. K. Dahlgren, A. Andersson, U. Larsson, S. Hajdu, and U. Båmstedt, Planktonic production and carbon transfer efficiency along a north-south gradient in the Baltic Sea, Marine Ecology Progress Series 409, 77-94 (2010). [CrossRef] [Google Scholar]
  19. J.H. Steele and E.W. Henderson, The role of predation in plankton models, Journal of Plankton Research 14, 157-172 (1992). [CrossRef] [Google Scholar]
  20. A.M. Edwards and J. Brindley, Zooplankton mortality and the dynamical behaviour of plankton population models, Bulletin of mathematical biology 61, 303-339 (1999). [CrossRef] [PubMed] [Google Scholar]
  21. R. Tian, C. Chen, J. Qi, R. Ji, R.C. Beardsley, and C. Davis, Model study of nutrient and phytoplankton dynamics in the Gulf of Maine: patterns and drivers for seasonal and interannual variability, ICES Journal of Marine Science 72, 388-402 (2014). [CrossRef] [Google Scholar]
  22. A. Yool, E.E. Popova, A.C. Coward, D. Bernie and T.R. Anderson, Climate change and ocean acidification impacts on lower trophic levels and the export of organic carbon to the deep ocean, Biogeosciences 10, 5831-5854 (2013). [CrossRef] [Google Scholar]
  23. H. Foloni-Neto, M. Tanaka, H. Joshima, and H. Yamazaki, A comparison between quasihorizontal and vertical observations of phytoplankton microstructure, Journal of Plankton Research 38, 993-1005 (2015). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.