Open Access
Issue
ITM Web Conf.
Volume 34, 2020
International Conference on Applied Mathematics and Numerical Methods – third edition (ICAMNM 2020)
Article Number 02011
Number of page(s) 18
Section Applied Mathematics and Numerical Methods
DOI https://doi.org/10.1051/itmconf/20203402011
Published online 03 December 2020
  1. C.TH. Baker, G.A. Bocharov, F.A. Rihan, A report on the use of delay differential equations in numerical modeling in the biosciences Citeseer, 1-46 (1999). [Google Scholar]
  2. K. Bansal and K.K. Sharma, ε-Uniform Numerical Technique for the Class of Time Dependent Singularly Perturbed Parabolic Problems With State Dependent Retarded Argument Arising from Generalised Stein’s Model of Neuronal Variability, Differ. Equ. Dyn. Syst., 1-28 (2016). [Google Scholar]
  3. K. Bansal and K.K. Sharma, Parameter uniform numerical scheme for time dependent singularly perturbed convection-diffusion-reaction problems with general shift arguments, Numer. Algorithms 75, 113-145 (2017). [CrossRef] [Google Scholar]
  4. K. Bansal, P. Rai and K.K. Sharma, Numerical treatment for the class of time dependent singularly perturbed parabolic problems with general shift arguments, Differ. Equ. Dyn. Syst. 25, 327-346 (2017). [CrossRef] [Google Scholar]
  5. A. Bellen, M. Zennaro, Numerical Methods for Delay Differential Equations, Clarendon Press, 2003. [CrossRef] [Google Scholar]
  6. V. Gupta, M. Kumar and S. Kumar, Higher order numerical approximation for time dependent singularly perturbed differential-difference convection-diffusion equations, Numer. Methods Partial Differential Equations 34, 357-380 (2018). [CrossRef] [Google Scholar]
  7. T. Kellogg, Analysis of some difference approximations for a singular perturbation problem without turning point, Math. Comput. 32, 1025-1039 (1978). [CrossRef] [Google Scholar]
  8. Y. Kuang, Delay differential equations: with applications in population dynamics (Academic Press, 1993) 398 pp. [Google Scholar]
  9. D. Kumar and M.M. Kadalbajoo, A parameter-uniform numerical method for timedependent singularly perturbed differential-difference equations, Appl. Math. Model. 35, 2805-2819 (2011). [CrossRef] [Google Scholar]
  10. P.R. Mahaffy, M.F. A’Hearn, S.K. Atreya, et.al, The Champollion cometary molecular analysis experiment, Advances in Space Research, 23(2), 349-359 (1999). [CrossRef] [Google Scholar]
  11. M. Musila and P. Lánsky`, Generalized Stein’s model for anatomically complex neurons, BioSystems 25, 179-191 (1991). [CrossRef] [Google Scholar]
  12. R.E. O’Malley, Singular perturbation methods for ordinary differential equations (Springer, 1991) 235 pp. [Google Scholar]
  13. VP. Ramesh and MK. Kadalbajoo, Upwind and midpoint upwind difference methods for time-dependent differential difference equations with layer behavior. Appl. Math. Comput. 202, 453-471 (2008). [Google Scholar]
  14. H.G. Roos, M. Stynes and L.R. Tobiska, Numerical methods for singularly perturbed differential equations (Springer Science & Business Media, 2008) 618 pp. [Google Scholar]
  15. D.A. Turuna, M.M. Woldaregay and G.F. Duressa, Uniformly Convergent Numerical Method for Singularly Perturbed Convection-Diffusion Problems, Kyungpook Mathematical Journal, 60(3), 631-647 (2020). [Google Scholar]
  16. R.B. Stein, A theoretical analysis of neuronal variability, Biophys. J. 5, 173-194 (1965). [CrossRef] [PubMed] [Google Scholar]
  17. R.B. Stein, Some models of neuronal variability. Biophys. J. 7, 37-68 (1967). [CrossRef] [PubMed] [Google Scholar]
  18. H. Tian, The exponential asymptotic stability of singularly perturbed delay differential equations with a bounded lag, J. Math. Anal. Appl. 270, 143-149 (2002). [CrossRef] [Google Scholar]
  19. M.M. Woldaregay and G.F. Duressa, Uniformly convergent numerical method for singularly perturbed delay parabolic differential equations arising in computational neuroscience, Kragujevac J. Math. 46, 65-84, Article in press. [Google Scholar]
  20. M.M. Woldaregay and G.F. Duressa, Parameter uniform numerical method for singularly perturbed parabolic differential difference equations, J. Nigerian Math. Soc. 38, 223-245 (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.