Open Access
Issue
ITM Web Conf.
Volume 35, 2020
International Forum “IT-Technologies for Engineering Education: New Trends and Implementing Experience” (ITEE-2019)
Article Number 03002
Number of page(s) 12
Section IT Technology in Mathematical Education of Engineers
DOI https://doi.org/10.1051/itmconf/20203503002
Published online 09 December 2020
  1. A.V. Aho, Computation and Computational Thinking, in The Computer Journal, 55(7), pp. 832–835 (2012). DOI: 10.1093/comjnl/bxs074 [CrossRef] [Google Scholar]
  2. A.V. Baranov, Computer modelling in the Physics course for IT students, in Computer Modelling and New Technologies, 21(3), pp. 45–49, (2017) [Google Scholar]
  3. A.V. Baranov, Virtual Students’ Laboratories in the Physics Practicum of the Technical University, In Proceedings of the 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), Vol.1, pp. 326-328, Novosibirsk: NSTU NETI (2016). DOI: 10.1109/APEIE.2016.7802287 [Google Scholar]
  4. A.V. Baranov, Students’ project developments of wave optics virtual labs, In Proceedings of the14th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), Vol.1, pp. 240-242, Novosibirsk: NSTU NETI (2018). DOI: 10.1109/APEIE.2018.8545025 [Google Scholar]
  5. E. Butikov, Precession and nutation of a gyroscope, in European Journal of Physics, 27(5), pp. 1071–1081 (2006). DOI:10.1088/0143-0807/27/5/006 [CrossRef] [Google Scholar]
  6. R. Chabay & B. Sherwood, Computational physics in the introductory calculusbased course, in Am. J. Phys, 76(4&5), pp. 307–313 (2008). DOI: 10.1119/1.2835054 [CrossRef] [Google Scholar]
  7. C.C. Chea, J. T. J. Huan, Higher Education 4.0: The Possibilities and Challenges, in Journal of Social Sciences and Humanities, 5(2), pp. 81-85 (2019). http://www.aiscience.org/journal/jssh [Google Scholar]
  8. T. De Jong, M.C. Linn, C.Z. Zacharia, Physical and Virtual Laboratories in Science and Engineering Education, in Science, 340 (19 April), pp. 305-308 (2013) [CrossRef] [Google Scholar]
  9. P.J. Denning, Remaining Trouble Spots with Computational Thinking, in Communications of the ACM, 60(6), pp. 33–39 (2017). DOI:10.1145/2998438 [CrossRef] [Google Scholar]
  10. A. DiSessa, Changing Minds: Computers, in Learning and Literacy, Cambridge, MA: MIT Press (2000) [CrossRef] [Google Scholar]
  11. A.P. Ershov, Programming, the second literacy, in Microprocessing and Microprogramming, 8(1), pp. 1–9 (1981). https://doi.org/10.1016/01656074(81)90002-8 [CrossRef] [Google Scholar]
  12. E. Etkina, A. Warren & M. Gentile, The Role of Models in Physics Instruction, in The Physics Teacher, 44(1), pp. 34-39 (2006). DOI: 10.1119/1.2150757 [CrossRef] [Google Scholar]
  13. N. Finkelstein, Learning Physics in Context: A study of student learning about electricity and magnetism, in International Journal of Science Education, 27(10), pp. 1187-1209 (2005). DOI: 10.1080/09500690500069491 [CrossRef] [Google Scholar]
  14. H. Gould, J. Tobochnik, Integrating Computation into the Physics Curriculum, In Alexandrov V.N., Dongarra J.J., Juliano B.A., Renner R.S., Tan C.J.K. (eds) Computational Science — ICCS 2001. ICCS 2001. Lecture Notes in Computer Science, vol 2073, Springer, Berlin, Heidelberg, pp. 1031-1040 (2001) [Google Scholar]
  15. I.A. Halloun, Modeling Theory in Science Education, Berlin: Springer (2004) [Google Scholar]
  16. D. Hestenes, Notes for a Modeling Theory of Science, Cognition and Instruction, in Proceedings of the 2006 GIREP conference: Modelling in Physics and Physics Education, August 20 – 25, Amsterdam, Netherlands, pp. 34-65 (2006) [Google Scholar]
  17. T-C. Hsu, S-C. Chang, Y-T. Hung, How to learn and how to teach computational thinking: Suggestions based on a review of the literature, in Computers & Educations, 126, pp. 296-310 2018. https://doi.org/10.1016/j.compedu.2018.07.004 [CrossRef] [Google Scholar]
  18. P. Johnson-Laird, Mental models, Cambridge: Harvard University Press, (1983). [Google Scholar]
  19. D.A. Kolb, Individual learning styles and the learning process, Cambridge: Massachusetts Institute of Technology, Sloan School of Management, pp. 535-571 (1971) [Google Scholar]
  20. D.A. Kolb, Experiential learning: Experience as the Source of Learning and Development, 2nd edition, Pearson Education, New Jersey (2015) [Google Scholar]
  21. R. Landau, Computational Physics: A Better Model for Physics Education?, in Computing in Science & Engineering, 8(5), pp. 50-58 (2006). DOI: 10.1109/MCSE.2006.85 [CrossRef] [Google Scholar]
  22. E.A. Lee, The Past, Present and Future of Cyber-Physical Systems: A Focus on Models, in Sensors, 15(3), pp. 4837-4869 (2015). DOI:10.3390/s150304837 [CrossRef] [Google Scholar]
  23. Merriam-Webster, On-Line Dictionary (2019). http://www.webster.com [Google Scholar]
  24. H.A. Müller, Rise of Intelligent Cyber-Physical Systems, in Computer, 50(12), pp. 7-9 (2017). DOI: 10.1109/MC.2017.4451221 [CrossRef] [Google Scholar]
  25. S. Papert, Mindstorms: Children, Computers, and Powerful Ideas, in NY: Basic Books, Inc., New York, (1980) [Google Scholar]
  26. M. Prensky, Students as designers and creators of educational computer games: Who else?, in British Journal of Educational Technology, 39(6), pp. 1004-1019 (2008) DOI:10.1111/j.1467-8535.2008.00823_2.x [CrossRef] [Google Scholar]
  27. A. Rao, Dynamics of particles and rigid bodies: a systematic approach, in Cambridge University Press (2006) [Google Scholar]
  28. E.F. Redish, Millikan Award Lecture (1998): Building a Science of Teaching Physics, in The American Journal of Physics, 67, pp. 562–573 (1999). https://doi.org/10.1119/1.19326 [CrossRef] [Google Scholar]
  29. L.G. Rimoldini, C. Singh, Student understanding of rotational and rolling motion concepts, in Phys. Rev. St Phys. Educ. Res., 1, 010102, pp. 1-9 (2005). DOI: 10.1103/PhysRevSTPER.1.010102 [CrossRef] [Google Scholar]
  30. K. Schwab, The Fourth Industrial Revolution, London: Penguin Random House. [Google Scholar]
  31. J.A. Stankovic, J.W. Sturges, J. Eisenberg, A 21st Century Cyber-Physical Systems Education, in Computer, 50(12), pp. 82-85, (2017). DOI:10.1109/MC.2017.4451222 [Google Scholar]
  32. M. Tedre, P.J. Denning, The Long Quest for Computational Thinking. Proceedings of the 16th Koli Calling Conference on Computing Education Research, November 2427 2016, Koli, Finland: pp. 120-129 (2016). DOI: http://dx.doi.org/10.1145/2999541.2999542 [Google Scholar]
  33. A.A. Verbitsky, V.G. Kalashnikov, Contextual Approach in Psychology, in European Scientific Journal, 9(32), pp. 1–12 (2013) [Google Scholar]
  34. T. Wallner, G. Wagner, Academic Education 4.0. Proceedings of the END 2016 International Conference on Education and New Developments, June 12-14 2016, Ljubljana, Slovenia, pp. 155–159 (2016) [Google Scholar]
  35. J.M. Wilson, E.F. Redish, Using Computers in Teaching Physics, in Physics Today, 42(1), pp. 34-41 (1989). https://doi.org/10.1063/1.881202 [CrossRef] [Google Scholar]
  36. J.M. Wing, Computational Thinking, in Communications of the ACM, 49(3), pp. 33–35, (2006). https://doi.org/10.1145/1118178.1118215 [CrossRef] [Google Scholar]
  37. B.M. Zwickl, D. Hu, N. Finkelstein, H.J. Lewandowski, Model-based reasoning in the physics laboratory: Framework and initial results, in Phys. Rev. St Phys. Educ. Res, 11, 020113 (2015). DOI: 10.1103/PhysRevSTPER.11.020113 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.