Open Access
ITM Web Conf.
Volume 40, 2021
International Conference on Automation, Computing and Communication 2021 (ICACC-2021)
Article Number 03021
Number of page(s) 5
Section Computing
Published online 09 August 2021
  1. Cohen, David & Carpenter, Kristy & Jarrell, Juliet & Huang, Xudong. (2019). Deep learning-based classification of multi-categorical presenile dementia data. Current Neurobiology. 10. 141–147. [Google Scholar]
  2. Yanqing, Jyoti & Zhang, Islam. (2017). a unique Deep Learning Based Multi-class Classification Method for Alzheimer’s Disease Detection Using Brain MRI Data. 213-222.10.1007/978-3-319-70772-3_20. [Google Scholar]
  3. N. D. Kodikara, R. N. Rajapakse and K. A. N. N. P. Gunawardena “Applying CNN for pre-detection of Alzheimer’s disease from structural MRI data” (2017) 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 2017, pp. 1–7, doi: 10.1109/M2VIP.2017.8211486. [Google Scholar]
  4. Ramírez J, Górriz JM, Munilla J, G, Ramírez J Ortiz A. Ensembles of Deep Learning Architectures for the first Diagnosis of the presenile dementia. Int J Neural Syst. 2016 Nov;26(7):1650025. doi: 10.1142/S0129065716500258. Epub 2016 Apr 4. PMID: 27478060. [Google Scholar]
  5. Zeng An, Jia Longfei, Frizzell Tory, Pan Dan Huang Yin, Song Xiaowei, Early Detection of Alzheimer’s Disease Using resonance Imaging: a unique Approach Combining Convolutional Neural Networks and Ensemble Learning, Frontiers in Neuroscience (2020), DOI=10.3389/fnins.2020.00259 [Google Scholar]
  6. I. X. Jiang, T. Nguyen, L. Chang, R. S. Turner and Almubarak, “Early Detection of Alzheimer’s Disease Using Patient Neuropsychological and Cognitive Data and Machine Learning Techniques,” 2019 IEEE International Conference on Big Data (Big Data),Los Angeles, CA, USA, 2019. [Google Scholar]
  7. Jyoti & Zhang, Islam Yanqing. Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural network. Brain Informatics. (2018). 5-10.1186/s40708-018-0080-3. [Google Scholar]
  8. L., Gong, X., K., Mao, Chen, M., Li, J., Nandi, Yue, & Li, M. (2018). Auto-Detection of Alzheimer’s Using Deep Convolutional Neural Networks. 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). [Google Scholar]
  9. Qin Z, Lan T, Ding Y Zhang C, Luo C, Xiao Z. Brain MR Image Classification for Alzheimer’s Diagnosis supported Multifeature Fusion.Comput Math Methods Med. (2017); 2017:1952373. doi:10.1155/2017/1952373. Epub 2017 May 22 [Google Scholar]
  10. Kim Oh, Chung K., YC., K.W. et al. Classification and Visualization of Alzheimer’s Disease using Volumetric Convolutional Neural Network and Transfer Learning. Sci Rep 9, 18150 (2019). [Google Scholar]
  11. R N Rajapakse, N D Kodikara and K A N N P Gunawardena. Applying Convolutional Neural Networks for Pre-detection of Alzheimer’s Disease from Structural MRI data. Conference Paper November 2017 DOI: 10.1109/M2VIP.2017.8211486. [Google Scholar]
  12. Naimul Mefraz Khan,Marcia Hon. Towards Alzheimer’s Disease Classification through Transfer Learning. arXiv:1711.11117v1 [cs.CV] 29 Nov 2017. [Google Scholar]
  13. Anjal D,Vindhya G B, Medha Mansi, Muskan Kedia Mahera Alam,. Prediction of Alzheimer’s Disease using Machine Learning Technique. IRJET-International Research Journal of Engineering and Technology Volume: 07 e-ISSN: 2395-0056 Issue: 05 | May 2020. [Google Scholar]
  14. G Stalin Babu, S N Tirumala Rao, R Rajeswara Rao. Exploring of Classification Methods for Early Detection of Alzheimer’s Disease. International Journal of Engineering and Advanced Technology (IJEAT).8958, Volume-8 Issue-6, August 2019. [Google Scholar]
  15. Chandni Naidu, Dhanush Kumar, N Maheshwari, M Sivagami, Gang Li. Prediction of Alzheimer’s Disease using Oasis Dataset. IRJET-International Journal of Recent Technology and Engineering Issue-6S3 April, 2019. [Google Scholar]
  16. Suhad Al-Shoukry1,2, And Taha H. Rassem1 (Senior, IEEE), Nasrin M. Makbol3 1 Faculty of Computing, University Malaysia Pahang, College of Computing and Applied Sciences, 26300 Kuantan, Pahang, MALAYSIA Alzheimer’s Diseases Detection by Using Deep Learning Algorithms: April 2020. [Google Scholar]
  17. Mr. Amir Ebrahimighahnavieh, SuhuaiLuo Raymond Chiong The University of Newcastle, University Drive, Callaghan 2308, Australia. Deep learning to detect presenile dementia from neuroimaging: a scientific literature review. 2019. [Google Scholar]
  18. Tong L, Venugopalan J, Wang MD, Hassanzadeh HR. Multimodal deep learning models for early detection of Alzheimers stage. doi 10.1038/s41598-020-74399-w Sci Rep. 2021Feb5;11(1):3254. [Google Scholar]
  19. Lucia Billeci, Lorenzo Bachi, Alessandro Tonacci and Asia Badolato. Machine Learning for the Classification of Alzheimer’s Disease and Its Prodromal Stage Using Brain Diffusion Tensor Imaging Data: a scientific Review September 2020. [Google Scholar]
  20. Aunsia Khan and Muhammad Usman Dept. of Computing, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Islamabad, Pakistan. Early Diagnosis of Alzheimer’s Disease using Machine Learning Techniques A Review Paper. KDIR 2015-7th International Conference on Knowledge Discovery and data Retrieval. [Google Scholar]
  21. Kwangsik Nho, Taeho Jo, and Andrew J. Saykin. Deep Learning in Alzheimer’s Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data. Front Aging Neurosci. 2019. [Google Scholar]
  22. Alzheimer disease facts and figures. Available online 20 March 2018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.