Open Access
Issue |
ITM Web Conf.
Volume 40, 2021
International Conference on Automation, Computing and Communication 2021 (ICACC-2021)
|
|
---|---|---|
Article Number | 03022 | |
Number of page(s) | 5 | |
Section | Computing | |
DOI | https://doi.org/10.1051/itmconf/20214003022 | |
Published online | 09 August 2021 |
- A. J. Sellen, R. H. Harper, “The Myth of the Paperless Offce”, MIT Press. (2003) [Google Scholar]
- B. Klein, S. Agne, A. Dengel, “Results of a Study on Invoice Reading Systems in Germany”, Springer. 451–462 (2004) [Google Scholar]
- K. He, G. Gkioxari, P. Dollár, R. Girshick, “Mask RCNN”, CVPR. (2018) [Google Scholar]
- S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, “Aggregated Residual Transformations for Deep Neural Networks”, CVPR. (2017) [Google Scholar]
- T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, “Feature Pyramid Networks for Object Detection”, CVPR. (2017) [Google Scholar]
- “Common Objects In Context”, https://cocodataset.org, Accessed: 2020-12-10 [Google Scholar]
- B. Majumder, N. Potti, S. Tata, J. Wendt, Q. Zhao, M. Najork, “Representation learning for information extraction from form-like documents”, ACL. 6495–6504 (2020) [Google Scholar]
- T. Denk, C. Reisswig, “Bertgrid: Contextualized embedding for 2d document representation and understanding”, NeurIPS. (2019) [Google Scholar]
- V. Sunder, A. Srinivasan, L. Vig, G. Shroff, R. Rahul, “One-shot information extraction from document images using neuro-deductive program synthesis”, Neural-Symbolic Learning and Reasoning at IJCAI. (2019) [Google Scholar]
- B. Davis, B. Morse, S. Cohen, B. Price, C. Tensmeyer, “Deep visual template-free form parsing”, ICDAR. (2019) [Google Scholar]
- S. Paliwal, V. D, R. Rahul, M. Sharma, L. Vig, “Tablenet: Deep learning model for end-to-end table detection and tabular data extraction from scanned document images”, ICDAR. (2019) [Google Scholar]
- X. Holt, A. Chisholm, “Extracting structured data from invoices”, ALTA. (2018) [Google Scholar]
- X. Zhao, E. Niu, Z. Wu, X. Wang, “Cutie: Learning to understand documents with convolutional universal text information extractor”, CVPR. (2019) [Google Scholar]
- A. Katti, C. Reisswig, C. Guder, S. Brarda, S. Bickel, J. Höhne, J. Faddoul, “Chargrid: Towards understanding 2d documents”, EMNLP. (2018). [Google Scholar]
- V. D, R. Rahul, G. Sehgal, Swati, A. Chowdhury, M. Sharma, L. Vig, G. ShroFF, A. Srinivasan, “Deep reader: Information extraction from document images via relation extraction and natural language.” Asian Conference on Computer Vision, Springer. (2018) [Google Scholar]
- R. Palm, O. Winther, F. Laws, “Cloudscan-a configuration-free invoice analysis system using recurrent neural networks”, ICDAR. Vol. 1. IEEE. (2017) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.