Open Access
ITM Web Conf.
Volume 40, 2021
International Conference on Automation, Computing and Communication 2021 (ICACC-2021)
Article Number 03029
Number of page(s) 5
Section Computing
Published online 09 August 2021
  1. Marcel Trotzek, Sven Koitka, and Christoph, M. Friedrich ,:”Utilizing Neural Networks and Linguistic Metadata for Early Detection of Depression Indications in Text Sequences”, DOI 10.1109/TKDE.2018.2885515, IEEE Transactions on Knowledge and Data Engineering,2019. [Google Scholar]
  2. Ranjana Jadhav,Shaurya Jadhav,Hitesh Sachdev,Vinay Chellwani,:”Mental disorder detection.Bipolar disorder scrutinization using machine learning” IEEE,978-1-5386-5933-5,2019. [Google Scholar]
  3. Jane H. K. Seah,et Al,:”Data Mining Approach to the Detection of Suicide in Social Media” IEEE-International Conference on Big Data,2018. [Google Scholar]
  4. Akkapon Wongkoblap, Miguel A. Vadillo, Vasa Curcin,:”Detecting and Treating Mental Illness on Social Networks”, IEEE-ICHI, DOI 10.1109/ICHI.2017.24,2017. [Google Scholar]
  5. Hao Wang, Jorge A. Castanon et Al,:”Sentiment Expression via Emoticons on Social Media” IEEE-International Conference on Big Data, 978-1-4799-9926-2/15/$31.00,2015. [Google Scholar]
  6. Walter Gerych, Emmanuel Agu, Elke Rundensteiner ,”Classifying Depression in Imbalanced Datasets using an Autoencoder-Based Anomaly Detection Approach” IEEE-ICSC DOI 10.1109/ICSC.2019.00028,2019. [Google Scholar]
  7. Sharath Chandra Guntuku,David B Yaden,Margaret L Kern,Lyle H Ungar,Joannes C Eichstaedt,:“Detecting depression and mental illness on social media: an intergrative review”, IEEE-ICHI, DOI 10.1109/ICHI.2017.24, 2017. [Google Scholar]
  8. Y. Zhang and B. Wallace, “A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification”, IJCNLP,pages 253–263,2017. [Google Scholar]
  9. Matthew Peters, Mark Neumann, Luke Zettlemoyer, and Wen-tau Yih,:“Dissecting contextual word embeddings: Architecture and representation”, pages 1499–1509,CEMNLP,2018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.