Open Access
Issue
ITM Web Conf.
Volume 40, 2021
International Conference on Automation, Computing and Communication 2021 (ICACC-2021)
Article Number 03031
Number of page(s) 6
Section Computing
DOI https://doi.org/10.1051/itmconf/20214003031
Published online 09 August 2021
  1. D. Berndt and J. Clifford. Using dynamic time warping to find patterns in time series. In AAAIWS, 1994. [Google Scholar]
  2. F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero, and M. Black. Keep it smpl: Automatic estimation of 3d human pose and shape from a single image. In ECCV, 2016. [Google Scholar]
  3. Z. Cao, T. Simon, S. Wei, and Y. Sheikh. Realtime multiperson 2d pose estimation using part affinity fields. In CVPR, 2017. [Google Scholar]
  4. A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose estimation. In ECCV, 2016 [Google Scholar]
  5. G. Papandreou, T. Zhu, N. Kanazawa, A. Toshev, J. Tompson, C. Bregler, and K. Murphy. Towards accurate multi-person pose estimation in the wild. In CVPR, 2017. [Google Scholar]
  6. J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake. Real-time human pose recognition in parts from single depth images. In CVPR, 2011 [Google Scholar]
  7. S. Wei, V. Ramakrishna, T. Kanade and Y. Sheikh, ”Convolutional Pose Machines,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016 pp. 4724- [Google Scholar]
  8. W. Rawat and Z. Wang. (2017). Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Computation. 29. 1–98. 10.1162/NECOa00990 [Google Scholar]
  9. K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-scale Image Recognition,” Published as a conference paper at ICLR, Cornel University Library, 2015. [Google Scholar]
  10. J. Tompson, A. Jain et al. ”Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation.” Eprint Arxiv(2014): 1799–1807. [Google Scholar]
  11. X. Chen, and A. Yuille. ”Articulated Pose Estimation by a Graphical Model with Image Dependent Pairwise Relations.” Eprint Arxiv(2014):1736–1744. [Google Scholar]
  12. T. L. Munea, Y. Z. Jembre, H. T. Weldegebriel, L. Chen, C. Huang and C. Yang, ”The Progress of Human Pose Estimation: A Survey and Taxonomy of Models Applied in 2D Human Pose Estimation,” in IEEE Access, vol. 8, pp. 133330–133348, 2020, doi: 10.1109/ACCESS.2020.3010248. [Google Scholar]
  13. X. Chu, W. Ouyang, H. Li and X. Wang, ”Structured Feature Learning for Pose Estimation,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4715–4723, doi: 10.1109/CVPR.2016.510. [Google Scholar]
  14. W. Yang, W. Ouyang, H. Li and X. Wang, ”End-to-End Learning of Deformable Mixture of Parts and Deep Convolutional Neural Networks for Human Pose Estimation,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 3073–3082, doi: 10.1109/CVPR.2016.335. [Google Scholar]
  15. Steven Chen & Richard Yang (2018). Pose Trainer: Correcting Exercise Posture using Pose Estimation. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.