Open Access
ITM Web Conf.
Volume 40, 2021
International Conference on Automation, Computing and Communication 2021 (ICACC-2021)
Article Number 03041
Number of page(s) 9
Section Computing
Published online 09 August 2021
  1. [Google Scholar]
  2. [Google Scholar]
  3. Ash Booth, Enrico Gerding, and Frank Mcgroarty. 2014. Automated trading with performance weighted random forests and seasonality. Expert Syst. Appl. 41, 8 (June, 2014), 3651–3661. DOI: [Google Scholar]
  4. Younes Chihab, Zineb Bousbaa, Marouane Chihab, Omar Bencharef, Soumia Ziti, and Miin-Shen Yang. 2019. Algo-Trading Strategy for Intraweek Foreign Exchange Speculation Based on Random Forest and Probit Regression. Appl. Comp. Intell. Soft Comput. 2019 (2019). DOI: [Google Scholar]
  5. Suryoday Basak, Saibal Kar, Snehanshu Saha, Luckyson Khaidem, Sudeepa Roy Dey, Predicting the direction of stock market prices using tree-based classifiers, The North American Journal of Economics and Finance, Volume 47, 2019, Pages 552–274320027051000567, ISSN 1062-9408, [Google Scholar]
  6. Bruno Miranda Henrique, Vinicius Amorim Sobreiro, Herbert Kimura, Stock price prediction using support vector regression on daily and up to the minute prices, The Journal of Finance and Data Science, Volume 4, Issue 3, 2018, Pages 183–201, ISSN 2405-9188, [Google Scholar]
  7. Omer Berat Sezer, Murat Ozbayoglu, Erdogan Dogdu, A Deep Neural-Network Based Stock Trading System Based on Evolutionary Optimized Technical Analysis Parameters, Procedia Computer Science, Volume 114, 2017, Pages 473–480, ISSN 1877-0509, [Google Scholar]
  8. Maragoudakis, M and Serpanos, D. (2010), towards stock market data mining using enriched random forests from textual resources and technical indicators. AIAI 2010, IFIP AICT 339, pp. 278–286. [Google Scholar]
  9. [Google Scholar]
  10. [Google Scholar]
  11. Manoj Thakur and Deepak Kumar. 2018. A hybrid financial trading support system using multi-category classifiers and random forest. Appl. Soft Comput. 67, C (June 2018), 337–349. DOI: [Google Scholar]
  12. M. Nabipour, P. Nayyeri, H. Jabani, S. S. and A. Mosavi, “Predicting Stock Market Trends Using Machine Learning and Deep Learning Algorithms Via Continuous and Binary Data; a Comparative Analysis,” in IEEE Access, vol. 8, pp. 150199–150212, 2020, doi: 10.1109/ACCESS.2020.3015966. [Google Scholar]
  13. M. H. L. B. Abdullah and V. Ganapathy, “Neural network ensemble for financial trend prediction,” 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119), 2000, pp. 157–161 vol.3, doi:10.1109/TENCON.2000.892242. [Google Scholar]
  14. R. D. Edwards, J. Magee, W. H. C. Bassetti, “Technical Analysis of Stock Trends, Chapter 1, The Technical Approach to Trading and Investing,” 9 Edition, CRC Press, Boca Raton, 2007, pp. 3–7. [Google Scholar]
  15. M. A. H. Dempster and C. M. Jones, “A Real-Time Adaptive Trading System Using Generic Programming,” Quantitative Finance, Vo. 1, No. 4, 2001, pp. 397–413. doi:10.1088/1469-7688/1/4/301 [Google Scholar]
  16. L. Breiman, “Random Forests,” Machine Learning Journal, Vol. 45, No. 1, 2001, p. 532. [Google Scholar]
  17. Wen Long, Zhichen Lu, Lingxiao Cui, Deep learning-based feature engineering for stock price movement prediction, Knowledge-Based Systems, Volume 164, 2019, Pages 163–173, ISSN 0950-7051, [Google Scholar]
  18. Viliam Vajda, Could a Trader Using Only “Old” Technical Indicator be Successful at the Forex Market?, Procedia Economics and Finance, Volume 15, 2014, Pages 318–325, ISSN 2212-5671, [Google Scholar]
  19. Patra, S., 2015. Techniques for time series prediction. International Journal of Research Science and Management, 2, pp.6–13. Google Scholar [Google Scholar]
  20. Wang, J., Wu, X. and Zhang, C., 2005. Support vector machines based on K-means clustering for real-time business intelligence systems. International Journal of Business Intelligence and Data Mining, 1(1),pp.54–64. Google Scholar [Google Scholar]
  21. W. Lv and R. Zhang, “A regression model on effective exchange rate of RMB based on Random Forest,” 2011 International Conference on E-Business and E-Government (ICEE), 2011, pp. 1–3, doi: 10.1109/ICEBEG.2011.5882520. [Google Scholar]
  22. Cain Evans, Konstantinos Pappas, Fatos Xhafa, Utilizing artificial neural networks and genetic algorithms to build an algo-trading model for intra-day foreign exchange speculation, Mathematical and Computer Modelling, Volume 58, Issues 5–6, 2013, Pages 1249–1266, ISSN 0895-7177, [Google Scholar]
  23. A. Hirabayashi, C. Arahna, and H. Iba, “Optimization of the trading rules in forex using genetic algorithms,” 2009, [Google Scholar]
  24. K.-J. Kim, “Financial time series forecasting using support vector machines,” Neurocomputing, vol. 55, no. 1-2, pp. 307–319, 2003. [CrossRef] [Google Scholar]
  25. B. M. Henrique, V. A. Sobreiro, and H. Kimura, “Stock price prediction using support vector regression on daily and up to the minute prices,” The Journal of Finance and Data Science, vol. 4, no. 3, pp. 183–201,2018. [Google Scholar]
  26. S. Basak, S. Kar, S. Saha, L. Khaidem, and S. R. Dey, “Predicting the direction of stock market prices using tree-based classifiers,” The North American Journal of Economics and Finance, vol. 47, pp. 552–567, 2019. [Google Scholar]
  27. M. Kumar and T. M., “Forecasting stock index movement: a comparison of support vector machines and random forest,” SSRN Electronic Journal, 2006. [Google Scholar]
  28. A. Peltonen Tuomas, “Are emerging market currency crises predictable?-A test,” 2006. [Google Scholar]
  29. C. Brownlees, G. Gallo Financial econometric analysis at ultra-high frequency: data handling concerns Comput Stat Data Anal, 51 (4) (2006), pp. 2232–2245 [Google Scholar]
  30. M.A. Goldstein, P. Kumar, F.C. Graves Computerized and high-frequency trading Financ Rev, 49 (2) (2014), pp. 177–202 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.