Open Access
Issue |
ITM Web Conf.
Volume 40, 2021
International Conference on Automation, Computing and Communication 2021 (ICACC-2021)
|
|
---|---|---|
Article Number | 03049 | |
Number of page(s) | 6 | |
Section | Computing | |
DOI | https://doi.org/10.1051/itmconf/20214003049 | |
Published online | 09 August 2021 |
- Ninad Mehendale, Rinkal Keniya, Real-time social distancing detector using Social-distancing,Net-19 deep learning network, Scribd, (2020), https://www.scribd.com/document/481289110/social-distance-detector. [Google Scholar]
- N. Singh Punn, S. Agarwal, S.K. Sonbhadra, Monitoring Covid- 19 social-distancing with person-detection and tracking via fine- tuned YOLOv3 and Deep-sort techniques, arXiv, (2020), https://arxiv.org/abs/2005.01385 [Google Scholar]
- V. Renganathan, D. Yang, E. Yurtsever, U. Ozguner, K.A. Redmill, A vision based social-distancing and critical density detection-system for COVID19, Researchgate, (2020), https://www.researchgate.net/publication/342763051_A_Vision_based_Social_Distancing_and_Critical_Density_Detection_System_for_COVID-19 [Google Scholar]
- P. Whig, S.M. Mohammad, R.R. Nadikattu, Novel economical social-distancing smart device for COVID19, International Journal of Electrical Engineering and Technology(IJEET,) (2020), https://papers.Ssrn.com/sol3/papers.cfm?abstract_id=3640230 [Google Scholar]
- S. Gawde, D. Kalbande, A. Ghorai, Digital solution for enforcing social-distancing, SSRN 3614898, International Conference on Innovative Computing & Communications (ICICC), (2020), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3614898 [Google Scholar]
- Dr. Neelavathy Pari S, Geetha A V, Jeevitha V K, Balaji Vasu,Monitoring Social-distancing by Smartphone App in the Effect of COVID19, IJERTV9IS090469, (2020), https://www.researchgate.net/publication/344536998_Monitoring_Social_Distancing_by_Smart_Phone_App_in_the_Effect_of_COVID-19 [Google Scholar]
- R. Zust, M. Bielecki, Z.G. Stanga, D. Siegrist, D. Meyerhofer,A. Stettbacher, T.W. Buehrer, G.A.G.Crameri, J.W. Deuel, Social-distancing alters the clinical course of COVID19 in young adults: A comparative cohort study, Clinical Infectious Diseases, PubMed, (2020), https://pubmed.ncbi.nlm.nih.gov/32594121/ [Google Scholar]
- Pratibha Rathi, Pranav Adarsh, Manoj Kumar, YOLO v3-Tiny: Object Detection and Recognition using one stage improved model, IEEE, (2020), https://ieeexplore.ieee.org/document/9074315 [Google Scholar]
- S Yana, Dedi Satria, S. Syahreza, Rizal Munadi, Implementati on of SMS-Gateway in the Flood Notification System,Researc hgate, (2020), https://www.researchgate.net/publication/340490994_Implementatin_of_SMS_Gateway_in_the_Flood_NotificatinSystem_using_Raspberry_Pi [Google Scholar]
- Shuaiyang Li, Liquan Zhao, Object Detection Algorithm Based on Improved YOLOv3, Researchgate, (2020), https://www.researchgate.net/publication/340145010_Object_Detection_Algorithm_Based_on_Improved_YOLOv3 [Google Scholar]
- Dr. T. Uma Devi, Sakshi Gupta, YOLOv2 based Real Time Object Detection, IJCST, (2020), http://www.ijcstjournal.org/volume-8/issue-3/IJCST-V8I3P4.pdf [Google Scholar]
- Shuyuan Yang, Fan Zhang, Licheng Jiao, Fang Liu, Rong Qu, Lingling Li, Zhixi Feng, A Survey of Deep Learning-based Object Detection, arxiv, (2019), https://arxiv.org/pdf/1907.09408.pdf [Google Scholar]
- Chulhee Lee, Youhak Lee, Jin-Sung Kim, Hyuk-Jae Lee; Fast Detection of Objects Using a YOLOv3 Network for a Vending Machine, IEEE, (2019), https://ieeexplore.ieee.org/document/8771517 [Google Scholar]
- Farhadi, Ali., Redmon Joseph, YOLOv3: An Incremental Improvement, arXiv:1804.02767,(2018), https://arxiv.org/abs/1804.02767 [Google Scholar]
- Tareq Abed Mohammed; Saad Albawi; Saad Al-Zawi, Understanding of a convolutional neural network, IEEE,(2018), https://ieeexplore.ieee.org/document/8308186 [Google Scholar]
- Varsha Pathak, Manish Joshi, A survey of SMS based Information Systems, Researchgate,(2015), https://www.researchgate.net/publication/277334889_A_survey_of_SMS_based_Information_Systems. [Google Scholar]
- Deva Ramanan, Zitnick Piotr Dollar, Lin Michael, Tsung-Yi, Belongie Lubomir, Maire Serge, Bourdev Ross, James Hays, Girshick, Pietro Perona, C. Lawrence, Microsoft COCO (Common Objects in Context),arxiv,(2015),https://arxiv.org/pdf/1405.0312.pdf [Google Scholar]
- M. Gordon, “An introduction to network-programming the Pythonway”, IEEE, (2005), https://ieeexplore.ieee.org/document/1541900/authors#authors [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.