Open Access
ITM Web Conf.
Volume 43, 2022
The International Conference on Artificial Intelligence and Engineering 2022 (ICAIE’2022)
Article Number 01018
Number of page(s) 6
Published online 14 March 2022
  1. R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, pp. 39–43. [CrossRef] [Google Scholar]
  2. V. Kothari, J. Anuradha, S. Shah, and P. Mittal, “A survey on particle swarm optimization in feature selection,” in Global Trends in Information Systems and Software Applications, P. V. Krishna, M. R. Babu, and E. Ariwa, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 192–201. [CrossRef] [Google Scholar]
  3. N. Omar, F. Jusoh, R. Binti, and M. Othman, “Review of feature selection for solving classification problems,” Journal of Research and Innovation in Information Systems, pp. 64–70, 01 2013. [Google Scholar]
  4. C. Yun, B. Oh, J. Yang, and J. Nang, “Feature subset selection based on bio-inspired algorithms,” J. Inf. Sci. Eng., vol. 27, pp. 1667–1686, 09 2011. [Google Scholar]
  5. B. X., M. Zhang, and W. N. Browne, “New fitness functions in binary particle swarm optimisation for feature selection,” in 2012 IEEE Congress on Evolutionary Computation, 2012, pp. 1–8. [Google Scholar]
  6. Y. Shi and R. Eberhart, “Fuzzy adaptive particle swarm optimization,” in Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), vol. 1, 2001, pp. 101–106 vol. 1. [CrossRef] [Google Scholar]
  7. L. Wang, X. Wang, J. Fu, and L. Zhen, “A novel probability binary particle swarm optimization algorithm and its application,” 2008. [Google Scholar]
  8. H. Nezamabadi-pour, M. R. Shahrbabaki, and M. M. Farsangi, “Binary particle swarm optimization: Challenges and new solutions,” The CSI Journal on Computer Science and Engineering, vol. 6, no. 1, 2008. [Google Scholar]
  9. L. Chuang, S. Tsai, and C. Yang, “Improved binary particle swarm optimization using catfish effect for feature selection,” Expert Systems with Applications, vol. 38, no. 10, pp. 12 699–12 707, 2011. [Online]. Available: [Google Scholar]
  10. A. El-Maleh, A. T. Sheikh, and S. M. Sait, “Binary particle swarm optimization (bpso) based state assignment for area minimization of sequential circuits,” Applied Soft Computing, vol. 13, no. 12, pp. 4832–4840, 2013. [Online]. Available: [CrossRef] [Google Scholar]
  11. L. Kumar and K. Bharti, An Improved BPSO Algorithm for Feature Selection. Springer, Singapore, 01 2019, pp. 505–513. [Google Scholar]
  12. D. Liu, Z. Xiao, H. Li, X. Hu, and M. O.P., “Accurate parameter estimation of a hydro-turbine regulation system using adaptive fuzzy particle swarm optimization,” Energies, vol. 12, no. 20, p. 3903, oct 2019. [CrossRef] [Google Scholar]
  13. B. H. Nguyen, B. Xue, P. Andreae, and M. Zhang, “A new binary particle swarm optimization approach: Momentum and dynamic balance between exploration and exploitation,” IEEE Transactions on Cybernetics, vol. 51, no. 2, pp. 589–603, 2021. [CrossRef] [Google Scholar]
  14. C. B. Veenhuis, “A set-based particle swarm optimization method,” in Parallel Problem Solving from Nature – PPSN X, G. Rudolph, T. Jansen, N. Beume, S. Lucas, and C. Poloni, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 971–980. [Google Scholar]
  15. M. Neethling and A. Engelbrecht, “Determining rna secondary structure using set-based particle swarm optimization,” in 2006 IEEE Congress on Evolutionary Computation, CEC 2006. IEEE, 01 2006, pp. 1670 – 1677. [CrossRef] [Google Scholar]
  16. W. Chen, J. Zhang, H. S. H. Chung, W. Zhong, W. Wu, and Y. Shi, “A novel set-based particle swarm optimization method for discrete optimization problems,” IEEE Transactions on Evolutionary Computation, vol. 14, no. 2, pp. 278–300, 2010. [CrossRef] [Google Scholar]
  17. T. Hino, S. Ito, T. Liu, and M. Maeda, “Set-based particle swarm optimization with status memory for knapsack problem,” Artificial Life and Robotics, vol. 21, pp. 98–105, 2015. [Google Scholar]
  18. P. C,ivicioglu, “Backtracking search optimization algorithm for numerical optimization problems,” Appl. Math. Comput., vol. 219, pp. 8121–8144, 2013. [MathSciNet] [Google Scholar]
  19. A. Chatzipavlis, G. Tsekouras, V. Trygonis, A. Velegrakis, J. Tsimikas, A. Rigos, T. Hasiotis, and C. Salmas, “Modeling beach realignment using a neuro-fuzzy network optimized by a novel backtracking search algorithm,” Neural Computing and Applications, vol. 31, pp. 1747–1763, 2018. [Google Scholar]
  20. M. A. Khanesar, M. Teshnehlab, and M. A. Shoorehdeli, “A novel binary particle swarm optimization,” in 2007 Mediterranean Conference on Control Automation, 2007, pp. 1–6. [Google Scholar]
  21. A. P. Engelbrecht, G. J., and J. Langeveld, “Set based particle swarm optimization for the feature selection problem,” Engineering Applications of Artificial Intelligence, vol. 85, pp. 324–336, 2019. [Online]. Available: [CrossRef] [Google Scholar]
  22. “Uci machine learning repository,” [Google Scholar]
  23. J. Kennedy and R. Eberhart, “A discrete binary version of the particle swarm algorithm,” in 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 5, 1997, pp. 4104–4108 vol.5. [CrossRef] [Google Scholar]
  24. “The openmp api specification for parallel programming,” [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.