Open Access
ITM Web Conf.
Volume 43, 2022
The International Conference on Artificial Intelligence and Engineering 2022 (ICAIE’2022)
Article Number 01024
Number of page(s) 7
Published online 14 March 2022
  1. Estrada, F. and Botzen W.W., 2021. Economic impacts and risks of climate change under failure and success of the Paris Agreement. Annals of the New York Academy of Sciences. [Google Scholar]
  2. Sun, K., Xiao, H., Liu, S., You, S., Yang, F., Dong, Y., Wang, W. and Liu, Y., 2020. A Review of Clean Electricity Policies—From Countries to Utilities. Sustainability, 12(19), p.7946. [Google Scholar]
  3. Carley, S. and Konisky D.M., 2020. The justice and equity implications of the clean energy transition. Nature Energy, 5(8), pp.569-577. [Google Scholar]
  4. [Google Scholar]
  5. Märtz, A., Plötz, P. and Jochem, P., 2021. Global perspective on CO2 emissions of electric vehicles. Environmental Research Letters, 16(5), p.054043. [Google Scholar]
  6. Gan, Y., Wang, M., Lu, Z. and Kelly, J., 2021. Taking into account greenhouse gas emissions of electric vehicles for transportation decarbonization. Energy Policy, 155, p.112353. [Google Scholar]
  7. Kwon, Y., Son, S. and Jang, K., 2020. User satisfaction with battery electric vehicles in South Korea. Transportation Research Part D: Transport and Environment, 82, p.102306. [Google Scholar]
  8. [Google Scholar]
  9. Knez, M., Zevnik G.K. and Obrecht, M., 2019. A review of available chargers for electric vehicles: United States of America, European Union, and Asia. Renewable and Sustainable Energy Reviews, 109, pp.284-293. [Google Scholar]
  10. Zhang, X., Liang, Y., Yu, E., Rao, R. and Xie, J., 2017. Review of electric vehicle policies in China: Content summary and effect analysis. Renewable and Sustainable Energy Reviews, 70, pp.698-714. [Google Scholar]
  11. B Benysek, G. and Jarnut, M., 2012. Electric vehicle charging infrastructure in Poland. Renewable and Sustainable Energy Reviews, 16(1), pp.320-328. [CrossRef] [Google Scholar]
  12. Chen, X., Li, Z., Dong, H., Hu, Z. and Mi C.C., 2020. Enabling extreme fast charging technology for electric vehicles. IEEE Transactions on Intelligent Transportation Systems, 22(1), pp.466-470. [Google Scholar]
  13. Mohammed, S.A.Q. and Jung J.W., 2021. A Comprehensive state-of-theart review of wired/wireless charging technologies for battery electric vehicles: Classification/common topologies/future research issues. IEEE Access. [Google Scholar]
  14. Yu, Z., Lu, F., Zou, Y. and Yang, X., 2022. Quantifying energy flexibility of commuter plug-in electric vehicles within a residence–office coupling virtual microgrid. Part II: Case study setup for scenario and sensitivity analysis. Energy and Buildings, 254, p.111552. [Google Scholar]
  15. Xiong, Y., Wang, B., Chu, C.C. and Gadh, R., 2018. Vehicle grid integration for demand response with mixture user model and decentralized optimization. Applied energy, 231, pp.481-493. [Google Scholar]
  16. Chung Y.W., Khaki, B., Li, T., Chu, C. and Gadh, R., 2019. Ensemble machine learning-based algorithm for electric vehicle user behavior prediction. Applied Energy, 254, p.113732. [Google Scholar]
  17. Lee Z.J., Li, T. and Low S.H., 2019, June. ACN-Data: Analysis and applications of an open EV charging dataset. In Proceedings of the Tenth ACM International Conference on Future Energy Systems (pp. 139-149). [Google Scholar]
  18. Jelti, F., Saadani, R. and Rahmoune, M., 2020, December. Assessment of Impacts from the Transition to Electric Mobility in Morocco. In 2020 IEEE 13th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA) (pp. 1-5). IEEE. [Google Scholar]
  19. El Harrouti, T., Abouabdellah, A. and Serrou, D., 2020, December. Impact of electric mobility on the sustainable development of the country, Case study in Morocco. In 2020 IEEE 13th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA) (pp. 1-6). IEEE. [Google Scholar]
  20. Chachdi, A., Rahmouni, B. and Aniba, G., 2017. Socio-economic analysis of electric vehicles in Morocco. Energy Procedia, 141, pp.644-653 [Google Scholar]
  21. Boulakhbar, M., Lebrouhi, B., Kousksou, T., Smouh, S., Jamil, A., Maaroufi, M. and Zazi, M., 2020. Towards a large-scale integration of renewable energies in Morocco. Journal of Energy Storage, 32, p.101806. [CrossRef] [Google Scholar]
  22. H. Diab, “EV READINESS ASSESSMENT,” 2018. [Online]. Available: occo1.pdf. [Google Scholar]
  24. [Google Scholar]
  25. [Google Scholar]
  26., [Google Scholar]
  27. [Google Scholar]
  28. [Google Scholar]
  29. (30- 04-2020). [Google Scholar]
  30. R.I. Kaitouni, A. Nakkouch, S. Mouline, M. El Amrani, Pour faire face aux effets d´evastateurs du r´echauffement climatique, ´Energie & Strat´egie, magazine de la F´ed´eration de l’Energie. (2018). N◦ _49 / 1e trimestre 2018, http://www.fedenerg. ma/wpcontent/ uploads/2018/12/ES_49.pdf, 30-04-2020. [Google Scholar]
  31. Charging stations’ statistics in ., (n.d.). morocco(accessed April 13, 2020). [Google Scholar]
  32. Zhang, M., Yu, Z. and Xu, Z., 2020. Short-Term Load Forecasting Using Recurrent Neural Networks With Input Attention Mechanism and Hidden Connection Mechanism. IEEE Access, 8, pp.186514-186529. [Google Scholar]
  33. Graves, A., Mohamed A.R. and Hinton, G., 2013, May. Speech recognition with deep recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing (pp. 6645-6649). Ieee. [CrossRef] [Google Scholar]
  34. Gao, M., Shi, G. and Li, S., 2018. Online prediction of ship behavior with automatic identification system sensor data using bidirectional long shortterm memory recurrent neural network. Sensors, 18(12), p.4211. [Google Scholar]
  35. Graves, A., 2012. Long short-term memory. In Supervised sequence labelling with recurrent neural networks (pp. 37-45). Springer, Berlin, Heidelberg. [Google Scholar]
  36. Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches. arXiv 2014, http://arXiv:1409.1259. [Google Scholar]
  37. Dey, R. and Salem F.M., 2017, August. Gate-variants of gated recurrent unit (GRU) neural networks. In 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS) (pp. 1597-1600). IEEE. [Google Scholar]
  38. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; Kudlur, M. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI’16), Savannah, GA, USA,2–4 November 2016; pp. 265–283 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.