Open Access
Issue
ITM Web Conf.
Volume 43, 2022
The International Conference on Artificial Intelligence and Engineering 2022 (ICAIE’2022)
Article Number 01023
Number of page(s) 3
DOI https://doi.org/10.1051/itmconf/20224301023
Published online 14 March 2022
  1. Abdullah, Vector-valued multiresolution analysis on local fields, Analysis. 34(4) (2014) 415–428. [Google Scholar]
  2. B. Behera and Q. Jahan, Multiresolution analysis on local fields and characterization of scaling functions, Adv. Pure Appl. Math. 3 (2012) 181–202. [CrossRef] [MathSciNet] [Google Scholar]
  3. J. J. Benedetto and R. L. Benedetto, Wavelet theory for local fields and related groups, J. Geom. Anal. 14 (2004) 424–456. [Google Scholar]
  4. Q. Chen and Z. Chang, A study on compactly supported orthogonal vector-valued wavelets and wavelet packets, Chaos, Solitons Fract. 31 (2007) 1024–1034. [CrossRef] [Google Scholar]
  5. L. Debnath and F. A. Shah, Wavelet Transforms and Their Applications, Birkhäuser, New York, 2015. [Google Scholar]
  6. Yu. A. Farkov, Orthogonal wavelets with compact support on locally compact Abelian groups, Izv. Math. 69(3) (2005) 623–650. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. P. Gabardo and M. Nashed, Nonuniform multiresolution analyses and spectral pairs, J. Funct. Anal. 158 (1998) 209–241. [CrossRef] [MathSciNet] [Google Scholar]
  8. J. P. Gabardo and M. Nashed, An analogue of Cohen’s condition for nonuniform multiresolution analyses, in: Wavelets, Multiwavelets and Their Applications, A. Aldroubi, E. Lin (Eds.), Amer. Math. Soc., Providence, RI, (1198) 41-61. [Google Scholar]
  9. H. K. Jiang, D. F. Li and N. Jin, Multiresolution analysis on local fields, J. Math. Anal. Appl. 294 (2204) 523–532. [Google Scholar]
  10. A. Yu. Khrennikov,V. M. Shelkovich and M. Skopina, p-Adic refinable functions and MRA-based wavelets, J. Approx. Theory, 161 (2009) 226-238. [CrossRef] [MathSciNet] [Google Scholar]
  11. W. C. Lang, Orthogonal wavelets on the Cantor dyadic group, SIAM J. Math. Anal. 27 (1996) 305–312. [CrossRef] [MathSciNet] [Google Scholar]
  12. S. F. Lukomskii, Step refinable functions and orthogonal MRA on Vilenkin groups. J. Fourier Anal. Appl. 20 (2014) 42–65. [CrossRef] [MathSciNet] [Google Scholar]
  13. S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(ℝ), Trans. Amer. Math. Soc. 315 (1989) 69–87. [MathSciNet] [Google Scholar]
  14. Meenakshi, P. Manchanda and A. H. Siddiqi, Wavelets associated with nonuniform multiresolution analysis on positive half-line, Int. J. Wavelets Multiresolut. Inf. Process. 10(2) (2012) 1250018, 27pp. ´ [CrossRef] [MathSciNet] [Google Scholar]
  15. G. Ólafsson, Continuous action of Lie groups on ℝn and frames, Int. J. Wavelets Multiresolut. Inf. Process. 3 (2005) 211–232. [CrossRef] [Google Scholar]
  16. D. Ramakrishnan and R. J. Valenza, Fourier Analysis on Number Fields, Graduate Texts in Mathematics 186 (Springer-Verlag, New York, 1999) [CrossRef] [Google Scholar]
  17. F. A. Shah, Construction of wavelet packets on p-adic field, Int. J. Wavelets Multiresolut. Inf. Process. 7(5) (2009) 553–565. [CrossRef] [Google Scholar]
  18. F. A. Shah, Tight wavelet frames generated by the Walsh polynomials, Int. J. Wavelets Multiresolut. Inf. Process. 11(6) (2013), pp. 15 pages. [Google Scholar]
  19. F. A. Shah, Frame multiresolution analysis on local fields of positive characteristic, J. Operators. Article ID 216060, 8 pages (2015). [Google Scholar]
  20. F. A. Shah and Waseem, Nonuniform Multiresolution Analysis Associated with Linear Canonical Transform, preprint. (2020). [Google Scholar]
  21. F. A. Shah and Abdullah, A characterization of tight wavelet frames on local fields of positive characteristic, J. Contemp. Math. Anal. 49 (2014) 251–259. [CrossRef] [MathSciNet] [Google Scholar]
  22. F. A. Shah and Abdullah, Nonuniform multiresolution analysis on local fields of positive characteristic, Comp. Anal. Opert. Theory. (2014) DOI 10.1007/s11785-014-0412-0. [Google Scholar]
  23. F. A. Shah and L. Debnath, Tight wavelet frames on local fields, Analysis, 33 (2013) 293–307. [Google Scholar]
  24. M. H. Taibleson, Fourier Analysis on Local Fields (Princeton University Press, Princeton, 1975). [Google Scholar]
  25. X. G. Xia and B. W. Suter, Vector-valued wavelets and vector filter banks, IEEE Trans. Signal Process. 44(3) (1996) 508–518. [CrossRef] [Google Scholar]
  26. P. Z. Xie and J. X. He, Multiresolution analysis and Haar wavelets on the product of Heisenberg group, Int. J. Wavelets Multiresolut. Inf. Process. 7(2) (2009) 243–254. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.