Open Access
Issue
ITM Web Conf.
Volume 43, 2022
The International Conference on Artificial Intelligence and Engineering 2022 (ICAIE’2022)
Article Number 01026
Number of page(s) 8
DOI https://doi.org/10.1051/itmconf/20224301026
Published online 14 March 2022
  1. “IAEA Safety Glossary,” 2017 [Google Scholar]
  2. Cementitious Materials for Nuclear Waste Immobilization | Wiley," n.d.; Faiz et al., 2019; Internationale Atomenergie-Organisation, 2002 [Google Scholar]
  3. (“IAEA Safety Glossary,” 2017; “The Behaviours of Cementitious Materials in Long Term Storage and Disposal of Radioactive Waste |; Lafond, n.d.). [Google Scholar]
  4. Abdel Rahman, R.O., Zin El Abidin, D.H.A., Abou-Shady, H., 2014. Cesium binding and leaching from single and binary contaminant cement–bentonite matrices. Chemical Engineering Journal 245,276–287. https://doi.org/10.1016/j.cej.2014.02.033 [Google Scholar]
  5. Abdel Rahman, R.O., Zin El Abidin, D.H.A., Abou-Shady, H., 2014. Cesium binding and leaching from single and binary contaminant cement–bentonite matrices. Chemical Engineering Journal 245,276–287. https://doi.org/10.1016/j.cej.2014.02.033 [Google Scholar]
  6. Dembovska, L., Bajare, D., Pundiene, I., Vitola, L., 2017. Effect of Pozzolanic Additives on the Strength Development of High Performance Concrete. Procedia Engineering 172, 202–210. https://doi.org/10.1016/j.proeng.2017.02.050 [Google Scholar]
  7. Elkamash, A., Elnaggar, M., Eldessouky, M., 2006. Immobilization of cesium and strontium radionuclides in zeolite-cement blends. Journal of Hazardous Materials 136, 310–316. https://doi.org/10.1016/j.jhazmat.2005.12.020 [Google Scholar]
  8. Michel, F., Piérard, J., Courard, L., Pollet, V., n.d. CONFERENCE: SCC 2007 GHENT. s e 8 [Google Scholar]
  9. Osmanlioglu, A.E., 2002. Immobilization of radioactive waste by cementation with purified kaolin clay. Waste Management 22, 481–483. https://doi.org/10.1016/S0956-053X(02)00036-3 [Google Scholar]
  10. Sasanian, S., Newson, T.A., 2014. Basic parameters governing the behaviour of cementtreated clays. Soils and Foundations 54, 209–224. https://doi.org/10.1016/j.sandf.2014.02.011 [Google Scholar]
  11. Sadiq, A., Ghailassi, T. E., Faiz, Z., Haddaji, Y., Bouih, A., Hannache, H., & Fakhi, S. (2021). Study of the spent resins confinement, as radioactive waste, by cementation in the presence of Moroccan natural red clay. Progress in Nuclear Energy, 141, 103967. [CrossRef] [Google Scholar]
  12. Faiz, Z., Fakhi, S., Bouih, A., El Hadi, H., 2019. Influence of natural additions on the physicochemical characteristics of cemented radioactive resins. Int. J. Environ. Sci. Technol. 16, 6637–6646. https://doi.org/10.1007/s13762-019-02213-w [CrossRef] [Google Scholar]
  13. Lafond, E., n.d. Etude chimique et dimensionnelle de résines échangeuses d’ions cationiques en milieu cimentaire 244. [Google Scholar]
  14. F.M. Lea, Investigations on pozzolanas, Building Research, Technical Paper No.27, 1940, pp. 1–63. [Google Scholar]
  15. C. He, B. Osbaeck, E. Makavicky, Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects, Cem. Concr. Res. 25 (8) (1995) 1691–1702. [Google Scholar]
  16. W. Prince, G. Castanier, J.L. Giafferi, Similarity between alkali - aggregate reaction and the natural alteration of rocks, Cem. Concr. Res. 31 (2001) 271–276. [Google Scholar]
  17. A.S. Moropoulou, G. Çakmak, A. Biscontin, E. Bakolas, E. Zendri, Advanced Byzantine cement based composites resisting earthquake stresses: the crushed brick-lime mortars of Justinian's Hagia Sophia, Constr. Build. Mater. 16 (2002) 543–552 [Google Scholar]
  18. Wesselsky, A., Jensen, O.M., 2009. Synthesis of pure Portland cement phases. CEMENT CONCRETE RES 39, 973–980. https://doi.org/10.1016/j.cemconres.2009.07.013 [CrossRef] [Google Scholar]
  19. Faiz, Z., Fakhi, S., Bouih, A., Idrissi, A., Mouldouira, M., 2012. Radioactive Waste Management: Optimization of the Mechanical Property of Cemented Ion Exchange Resin, vol.8. [Google Scholar]
  20. Ghailassi, T.E., Belayachi, M.A., Bouih, A., Labied, S., Guedira, T., Benali, O., 2017. Mathematical approach for research of new formulation for immobilization of radioactive waste in cementitious matrices. Environmental Sciences 8, 9. [Google Scholar]
  21. Gressier, F., n.d. Étude de la rétention des radionucléides dans les résines échangeuses d’ions des circuits d’une centrale nucléaire à eau sous pression 214. [Google Scholar]
  22. Grubbs, F.E., 1969. Procedures for Detecting Outlying Observations in Samples. Technometrics 11,1–21. https://doi.org/10.1080/00401706.1969.10490657 [Google Scholar]
  23. Shengtao, F., Li, G., Li, C., Benli, W., Lihong, W., 1997. Radiobiological waste treatment-ashing treatment and immobilization with cement. [Google Scholar]
  24. Karamalidis, A., Voudrias, E., 2007. Release of Zn, Ni, Cu, SO42− and CrO42− as a function of pH from cement-based stabilized/solidified refinery oily sludge and ash from incineration of oily sludge. Journal of Hazardous Materials 141, 591–606. https://doi.org/10.1016/j.jhazmat.2006.07.034 [CrossRef] [Google Scholar]
  25. L. Sujeong, Y.J. Kim, H.S. Moon, Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron, J. Am. Ceram. Soc. 10 (1999) 2841–2848. [Google Scholar]
  26. Abdel Rahman, R.O., Zaki, A.A., 2020. Comparative analysis of nuclear waste solidification performance models: Spent ion exchanger-cement based wasteforms. Process Safety and Environmental Protection 136, 115–125. https://doi.org/10.1016/j.psep.2019.12.038 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.