Open Access
Issue |
ITM Web Conf.
Volume 43, 2022
The International Conference on Artificial Intelligence and Engineering 2022 (ICAIE’2022)
|
|
---|---|---|
Article Number | 01027 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/itmconf/20224301027 | |
Published online | 14 March 2022 |
- Abbas, F., Gattal, A., Djeddi, C., Bensefia, A., Jamil, A., Saoudi, K.: Offline writer identification based on clbp and vlbp. Pattern Recognition and Artificial Intelligence 1322, 188 (2021) [Google Scholar]
- Bulacu, M., Schomaker, L.: Text-independent writer identification and verification using textural and allographic features. Pattern Analysis and Machine Intelligence, IEEE Transactions on 29(4), 701–717 (2007) [Google Scholar]
- Christlein, V., Maier, A.: Encoding cnn activations for writer recognition. In: 2018 13th IAPR International Workshop on Document Analysis Systems (DAS). pp. 169–174. IEEE (2018) [CrossRef] [Google Scholar]
- Djeddi, C., Meslati, L.S., Siddiqi, I., Ennaji, A., El Abed, H., Gattal, A.: Evaluation of texture features for offline arabic writer identification. In: 2014 11th IAPR international workshop on document analysis systems. pp. 106–110. IEEE (2014) [CrossRef] [Google Scholar]
- Fiel, S., Sablatnig, R.: Writer identification and retrieval using a convolutional neural network. In: International Conference on Computer Analysis of Images and Patterns. pp. 26–37. Springer (2015) [MathSciNet] [Google Scholar]
- Hannad, Y., Siddiqi, I., Djeddi, C., El-Kettani, M.E.Y.: Improving arabic writer identification using score-level fusion of textural descriptors. IET Biometrics 8(3), 221–229 (2019) [CrossRef] [Google Scholar]
- Hannad, Y., Siddiqi, I., El Kettani, M.E.Y.: Writer identification using texture descriptors of handwritten fragments. Expert Systems with Applications 47, 14–22 (2016) [CrossRef] [Google Scholar]
- He, S., Schomaker, L.: Fragnet:Writer identification using deep fragment networks. IEEE Transactions on Information Forensics and Security 15, 3013–3022 (2020) [CrossRef] [Google Scholar]
- Jegou, H., Perronnin, F., Douze, M., S´anchez, J., Perez, P., Schmid, C.: Aggregating local image descriptors into compact codes. IEEE transactions on pattern analysis and machine intelligence 34(9), 1704–1716 (2011) [Google Scholar]
- Ratha, N.K., Senior, A., Bolle, R.M.: Automated biometrics. In: International Conference on Advances in Pattern Recognition. pp. 447–455. Springer (2001) [Google Scholar]
- Schomaker, L.: Advances in writer identification and verification. In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007). vol. 2, pp. 1268–1273. IEEE (2007) [CrossRef] [Google Scholar]
- Semma, A., Hannad, Y., El Kettani, M.E.Y.: Impact of the cnn patch size in the writer identification. In: Networking, Intelligent Systems and Security, pp. 103–114. Springer (2022) [CrossRef] [Google Scholar]
- Semma, A., Hannad, Y., Siddiqi, I., Djeddi, C., El Kettani, M.E.Y.: Writer identification using deep learning with fast keypoints and harris corner detector. Expert Systems with Applications p. 115473 (2021) [CrossRef] [Google Scholar]
- Srihari, S.N., Cha, S.H., Arora, H., Lee, S.: Individuality of handwriting. Journal of Forensic Sciences 47(4), 856–872 (2002) [Google Scholar]
- Tan, G.X., Viard-Gaudin, C., Kot, A.C.: Automatic writer identification framework for online handwritten documents using character prototypes. pattern recognition 42(12), 3313–3323 (2009) [CrossRef] [Google Scholar]
- Tang, Y., Wu, X.: Text-independent writer identification via cnn features and joint bayesian. In: 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR). pp. 566–571. IEEE (2016) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.