Open Access
Issue
ITM Web Conf.
Volume 43, 2022
The International Conference on Artificial Intelligence and Engineering 2022 (ICAIE’2022)
Article Number 01028
Number of page(s) 7
DOI https://doi.org/10.1051/itmconf/20224301028
Published online 14 March 2022
  1. L. Foulloy, V. Clivillé, and L. Berrah, “A fuzzy temporal approach to the Overall Equipment Effectiveness measurement,” Comput. Ind. Eng., vol. 127, no. November 2018, pp. 103–115, 2019, doi: 10.1016/j.cie.2018.11.043. [CrossRef] [Google Scholar]
  2. F. Vernadat, L. Shah, A. Etienne, and A. Siadat, “VR-PMS: A new approach for performance measurement and management of industrial systems,” Int. J. Prod. Res., vol. 51, no. 23–24, pp. 7420–7438, 2013, doi: 10.1080/00207543.2012.752593. [CrossRef] [Google Scholar]
  3. L. A. B. Suzana E., Hikichi, Eduardo G. Salgado, “Forecasting number of ISO 14001 certifications in the Americas using ARIMA models.pdf,” J. Clean. Prod., 2017. [Google Scholar]
  4. M. Bakkari and A. Khatory, “Industry 4.0: Strategy for more sustainable industrial development in smes,” Proc. Int. Conf. Ind. Eng. Oper. Manag., pp. 1693–1701, 2017. [Google Scholar]
  5. L. A. Line, Kaizen Assembly: Designing, Constructing, and Managing a Lean Assembly Line June 28, 2006, vol. 27, no. 1. 2007. [Google Scholar]
  6. N. M. Agrawal, “Modeling Deming’s quality principles to improve performance using interpretive structural modeling and MICMAC analysis,” Int. J. Qual. Reliab. Manag., vol. 36, no. 7, pp. 1159–1180, 2019, doi: 10.1108/IJQRM-07-2018-0204. [CrossRef] [Google Scholar]
  7. I. Alhuraish, C. Robledo, and A. Kobi, “A comparative exploration of lean manufacturing and six sigma in terms of their critical success factors,” J. Clean. Prod., vol. 164, pp. 325–337, 2017, doi: 10.1016/j.jclepro.2017.06.146. [CrossRef] [Google Scholar]
  8. V. Swarnakar, A. R. Singh, and A. K. Tiwari, “Effect of lean six sigma on firm performance: A case of Indian automotive component manufacturing organization,” Mater. Today Proc., no. xxxx, 2020, doi: 10.1016/j.matpr.2020.07.115. [Google Scholar]
  9. L. S. Dalenogare, G. B. Benitez, N. F. Ayala, and A. G. Frank, “The expected contribution of Industry 4.0 technologies for industrial performance,” Int. J. Prod. Econ., vol. 204, no. August, pp. 383–394, 2018, doi: 10.1016/j.ijpe.2018.08.019. [CrossRef] [Google Scholar]
  10. M. Robert, P. Giuliani, and C. Gurau, “Implementing industry 4.0 real-time performance management systems: the case of Schneider Electric,” Prod. Plan. Control, vol. 0, no. 0, pp. 1–17, 2020, doi: 10.1080/09537287.2020.1810761. [Google Scholar]
  11. J. Enke, J. Metternich, D. Bentz, and P. J. Klaes, “Systematic learning factory improvement based on maturity level assessment,” Procedia Manuf., vol. 23, no. 2017, pp. 45–50, 2018, doi: 10.1016/j.promfg.2018.03.160. [CrossRef] [Google Scholar]
  12. D. A. Doss, R. Goza, R. Tesiero, B. Gokaraju, and D. H. Mcelreath, “The Capability Maturity Model as an Industrial Process Improvement Model,” Manuf. Sci. Technol., vol. 4, no. 2, pp. 17–24, 2017, doi: 10.13189/mst.2017.040201. [Google Scholar]
  13. C. F. Lindberg, S. Tan, J. Yan, and F. Starfelt, “Key Performance Indicators Improve Industrial Performance,” Energy Procedia, vol. 75, pp. 1785–1790, 2015, doi: 10.1016/j.egypro.2015.07.474. [CrossRef] [Google Scholar]
  14. L. Zhu, C. Johnsson, M. Varisco, and M. M. Schiraldi, “Key performance indicators for manufacturing operations management - Gap analysis between process industrial needs and ISO 22400 standard,” Procedia Manuf., vol. 25, pp. 82–88, 2018, doi: 10.1016/j.promfg.2018.06.060. [CrossRef] [Google Scholar]
  15. R. S. Kaplan and D. P. Norton, “The Balanced Scorecard – Measures that Drive Performance,” Harvard Bus., pp. 71–79, 1992. [Google Scholar]
  16. A. M. Ghalayini, J. S. Noble, and T. J. Crowe, “An integrated dynamic performance measurement system for improving manufacturing competitiveness,” Int. J. Prod. Econ., vol. 48, no. 3, pp. 207–225, 1997, doi: 10.1016/S0925-5273(96)00093-X. [CrossRef] [Google Scholar]
  17. A. Neely, C. Adams, and P. Crowe, “The performance prism in practice,” Meas. Bus. Excell., vol. 5, no. 2, pp. 6–13, 2001, doi: 10.1108/13683040110385142. [CrossRef] [Google Scholar]
  18. T. Kippenberger, “The performance pyramid,” the antidote, vol. Vol. 1 No., pp. 10–11, 1996, doi: 10.1108/EUM0000000006389. [Google Scholar]
  19. CMMI Product Team, “CMMI for development version,” vol. v1.2, p. 573, 2006. [Google Scholar]
  20. C. Yoo et al., “A unified model for the implementation of both ISO 9001:2000 and CMMI by ISO-certified organizations,” J. Syst. Softw., vol. 79, no. 7, pp. 954–961, 2006, doi: 10.1016/j.jss.2005.06.042. [CrossRef] [Google Scholar]
  21. A. Neely et al., “Performance measurement system design: Developing and testing a process-based approach,” Int. J. Oper. Prod. Manag., vol. 20, no. 10, pp. 1119–1145, 2000, doi: 10.1108/01443570010343708. [CrossRef] [Google Scholar]
  22. International Society of Automation, International Society of Automation. 2005. [Google Scholar]
  23. B. R. Ferrer, U. Muhammad, W. M. Mohammed, and J. L. M. Lastra, “Implementing and visualizing ISO 22400 key performance indicators for monitoring discrete manufacturing systems,” Machines, vol. 6, no. 3, 2018, doi: 10.3390/MACHINES6030039. [Google Scholar]
  24. S. Š. Žižek, “Key Performance Indicators and Industry 4 . 0 – A Socially Responsible Perspective,” no. 3, 2020, doi: 10.2478/ngoe-2020-0015. [Google Scholar]
  25. C. C. A. Ebenezer, “Measuring Performance in Small and Medium Scale Enterprises in the Manufacturing Industry in Ghana,” Int. J. Res. Bus. Stud. Manag., vol. 2, no. 12, pp. 34–43, 2015. [Google Scholar]
  26. S. S. Nudurupati, P. Garengo, and U. S. Bititci, “Impact of the changing business environment on performance measurement and management practices,” Int. J. Prod. Econ., vol. 232, no. October 2020, p. 107942, 2021, doi: 10.1016/j.ijpe.2020.107942. [CrossRef] [Google Scholar]
  27. K. Bhadani, G. Asbjörnsson, E. Hulthén, and M. Evertsson, “Development and implementation of key performance indicators for aggregate production using dynamic simulation,” Miner. Eng., vol. 145, no. April 2019, p. 106065, 2020, doi: 10.1016/j.mineng.2019.106065. [CrossRef] [Google Scholar]
  28. H. Tokola, C. Gröger, E. Järvenpää, and E. Niemi, “Designing Manufacturing Dashboards on the Basis of a Key Performance Indicator Survey,” Procedia CIRP, vol. 57, pp. 619–624, 2016, doi: 10.1016/j.procir.2016.11.107. [CrossRef] [Google Scholar]
  29. ISO 9004, “Management de la qualité — Qualité d’un organisme — Lignes directrices pour obtenir des performances durables,” pp. 1–17, 2018. [Google Scholar]
  30. S. El Hamdi, M. Oudani, and A. Abouabdellah, Morocco’s Readiness to Industry 4.0, vol. 146. Springer International Publishing, 2020. [Google Scholar]
  31. Industrie de maroc, “20 ans d’industrialisation,” septembre 2019, pp. 14–15, 2019. [Google Scholar]
  32. T. and G. and D. E. Minister of Industry, “Industrial Acceleration Plan 2014-2020,” Industrial Acceleration Plan 2014-2020. http://www.mcinet.gov.ma/fr/content/plan-d’accelerationindustrielle-2014-2020. [Google Scholar]
  33. B. Akdemir, “Technological Forecasting & Social Change A study to determine the effects of industry 4 . 0 technology components on organizational performance Meral Calıs,” vol. 167, no. January, pp. 0–3, 2021, doi: 10.1016/j.techfore.2021.120615. [Google Scholar]
  34. Y. Li, J. Dai, and L. Cui, “The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model,” Int. J. Prod. Econ., vol. 229, no. April, p. 107777, 2020, doi: 10.1016/j.ijpe.2020.107777. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.