Open Access
ITM Web Conf.
Volume 44, 2022
International Conference on Automation, Computing and Communication 2022 (ICACC-2022)
Article Number 03003
Number of page(s) 6
Section Computing
Published online 05 May 2022
  1. [Google Scholar]
  2. Christian Szegedy, Alexander, Toshev and Dumitru Erhan,“Deep Neural Network For Object Detection” NIPS, 2013. [Google Scholar]
  3. [Google Scholar]
  4. Adnan Saood and Iyad Hatem, “COVID-19 lung CT image segmentation using deep learning methods: U-Net versus Segnet”, Feb 2021. [Google Scholar]
  5. Zbontar, Ling,“Barlow Twins: Self-Supervised Learning via Redundancy Reduc- tion”, 2021 [Google Scholar]
  6. Shokouh Shakouri, Mohammad Amin Bakhshali, Parvaneh Layegh, Behzad Kiani, Farid Masoumi, Saeedeh Ataei Nakhaei and Sayyed Mostafa Mostafavi, “COVID19- CT- dataset: an open-access chest CT image repository of 1000+ patients with con- firmed cOvID-19 diagnosis”, May 2021. [Google Scholar]
  7. Shervin Minaee, Yuri Boykov, Fatih Porikli, et al., “Image Segmentation Using Deep Learning: A Survey”, arXiv, Nov 2020 [Google Scholar]
  8. Nassir H. Salman, “Image Segmentation Based on Watershed and Edge Detection Techniques”, DBLP, Jan 2006 [Google Scholar]
  9. Samuel G. Armato, Geoffrey McLennan, “The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans”, ISSN: 38(2): 915–931, Feb 2011. [Google Scholar]
  10. K. He, X. Zhang, S. Ren and J. Sun, “Deep Resifual Learning for Image Recogni- tion”, CVPR, 2018 [Google Scholar]
  11. Jasjit S. Suri, Sushant, Agarwal and Rajesh Pathak, “COVLIAS 1.0: Lung Seg- mentation in COVID-19 Computed Tomography Scans Using Hybrid Deep Learning Artificial Intelligence Models” MDPI Diagnostics, 11, 2021, 1405 February 2014. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.