Open Access
Issue |
ITM Web Conf.
Volume 44, 2022
International Conference on Automation, Computing and Communication 2022 (ICACC-2022)
|
|
---|---|---|
Article Number | 03024 | |
Number of page(s) | 6 | |
Section | Computing | |
DOI | https://doi.org/10.1051/itmconf/20224403024 | |
Published online | 05 May 2022 |
- Yuezun Li, Siwei Lyu, “ExposingDF Videos By Detecting Face Warping Artifacts,” in arXiv Conference May, 2019 [Google Scholar]
- Yuezun Li, Ming-Ching Chang and Siwei Lyu “Exposing AI Created Fake Videos by Detecting Eye Blinking” in IEEE conference 2018 [Google Scholar]
- Huy H. Nguyen, Junichi Yamagishi, and Isao Echizen “ Using capsule networks to detect forged images and videos ”, IEEE conference, 2018. [Google Scholar]
- Justus Thies, Michael Zollhofer, Marc Stamminger, Christian Theobalt, and Matthias Nießner, “Face2Face: Real-time face capture and reenactment of RGB videos,” in CVPR. IEEE, 2019. [Google Scholar]
- Hyeongwoo Kim, Pablo Garrido, Ayush Tewari and Weipeng Xu “Deep Video Portraits” in arXiv conference, May 2020 [Google Scholar]
- Mika Westerlund, The Emergence of Deepfake Technology:, Technology Innovation Management, Version 9, November 2019. [Google Scholar]
- Thanh Thi Nguyena, Quoc Viet Hung Nguyenb, Dung Tien Nguyena, Duc Thanh Nguyena, Thien Huynh-ThecSaeid Nahavandid, Thanh Tam Nguyene, Quoc-Viet Phamf, Cuong M. Nguyen, arXiv conference, Febuary 2022. [Google Scholar]
- Rushikesh Potdar, Ajay Gidd, Shreya Kulkarni, Rohit Chavan, Prof. Nikam, International Research Journal of Modernization in Engineering Technology and Science, Volume:03/Issue:07/July- 2021. [Google Scholar]
- David G'uera and Edward J. Delp. Deepfake video detection using recurrent neural networks. In AVSS conference, 2018. [Google Scholar]
- Umur Aybars Ciftci, Like Demir, Lijun Yin “Detection of Synthetic Portrait Videos using Biological Signals”, IEEE Transactions On Pattern Analysis And Machine Intelligence, Vol. 10, No. 10, July 2020 [Google Scholar]
- Yuezun Li, Xin Yang, Pu Sun, Honggang Qi and Siwei Lyu, arXiv conference, arXiv:1909.12962v4, March 2020. [Google Scholar]
- Karthik P.C., Sanjana S., M.P. Adithya Vijayan, Thushara, P., International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Vol. 10 Issue May-2021 [Google Scholar]
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition, arXiv conference, arXiv:1512.03385v1, Dec 2018. [Google Scholar]
- Luisa Verdoliva, Media Forensics and DeepFakes: an overview, arXiv:2001.06564v1, IEEE, January 2020. [Google Scholar]
- R. Raghavendra, Kiran B. Raja, Sushma Venkatesh, and Christoph Busch, “Transferable deep-CNN features for detecting digital and print-scanned morphed face images,” in CVPRW. IEEE, 2019. [Google Scholar]
- Tiago de Freitas Pereira, Andr'e Anjos, Jos'e Mario De Martino, and S'ebastien Marcel, “Can face anti spoofing countermeasures work in a real world scenario?,” in ICB. IEEE, 2020. [Google Scholar]
- Nicolas Rahmouni, Vincent Nozick, Junichi Yamagishi, and Isao Echizen, “Distinguishing computer graphics from natural images using convolution neural networks,” in WIFS. IEEE, 2018 [Google Scholar]
- Thanh Thi Nguyena, Quoc Viet Hung Nguyenb, Dung Tien Nguyena, Duc Thanh Nguyena, Thien Huynh-ThecSaeid Nahavandid, Thanh Tam Nguyene, Quoc-Viet Phamf, Cuong M. Nguyen, arXiv conference, Febuary 2022. [Google Scholar]
- A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Niessner, “Faceforensics++: Learning to detect manipulated facial images,” in The IEEE International Conference on Computer Vision (ICCV), October 2019. October 2019. [Google Scholar]
- Ayush Tewari, Michael Zollhoefer, Florian Bernard, Pablo, Garrido, Hyeongwoo Kim, Patrick Perez, and Christian Theobalt. High-fidelity monocular face reconstruction based on an unsupervised model-based face autoencoder. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2):357–370, 2018. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.