Issue |
ITM Web Conf.
Volume 44, 2022
International Conference on Automation, Computing and Communication 2022 (ICACC-2022)
|
|
---|---|---|
Article Number | 03064 | |
Number of page(s) | 6 | |
Section | Computing | |
DOI | https://doi.org/10.1051/itmconf/20224403064 | |
Published online | 05 May 2022 |
A Novel Method of Deepfake Detection
Department of Electronic Engineering, Ramrao Adik Institute of Technology, Nerul, Navi Mumbai
* e-mail: rutujahande2000@gmail.com
** e-mail: snehagoon2000@gmail.com
*** e-mail: aaditi.gondhali28@gmail.com
**** e-mail: navin.singhaniya@rait.ac.in
Deep-Fake is a novel artificial media technology that uses the likeness of someone else to replace people in existing photographs and films. Deep Learning, as the name implies, is a type of Artificial Intelligence that is used to create it. It is critical to develop counter attacking approaches for detecting fraudulent data. This research examines the Deep-Fake technology in depth. The Deep-Fake Detection discussed here is based on current datasets, such as the Deep-Fake Detection Challenge (DFDC) and Google’s Deep-Fake Detection dataset (DFD). The creation of a bespoke dataset from high-quality Deep-Fakes was utilised to test models. The results of both with and without Transfer Learning were analysed. Finally, the trained models were used to spot well-known deep-fakes of former US President Barack Obama and well-known actor Tom Cruise. A comparison study was performed on all three models. The findings show that the detection are generally domain-specific tasks, however that using Transfer Learning considerably improves the model performance parameters, whereas convolutional RNN gives sequence detection advantage.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.