Open Access
ITM Web Conf.
Volume 44, 2022
International Conference on Automation, Computing and Communication 2022 (ICACC-2022)
Article Number 03032
Number of page(s) 6
Section Computing
Published online 05 May 2022
  1. Fang, Yuke & Deng, Weihong & Du, Junping & Hu, Jiani. (2020). Identity-Aware CycleGAN for Face Photo- Sketch Synthesis and Recognition. Pattern Recognition. 102. 107249. doi: 10.1016/j.patcog.2020.107249. [CrossRef] [Google Scholar]
  2. Sahil Dalal, Virendra P. Vishwakarma, Sanchit Kumar, Feature-based Sketch-Photo Matching for Face Recognition, Procedia Computer Science, Volume 167, 2020, Pages 562–570, ISSN 1877-0509. [CrossRef] [Google Scholar]
  3. C. Galea and R. A. Farrugia, “Forensic Face Photo- Sketch Recognition Using a Deep Learning-Based Architecture,” in IEEE Signal Processing Letters, vol. 24, no, 11, pp.1586–1590, Nov. 2017, doi: 10.1109/LSP.2017.2749266 [CrossRef] [Google Scholar]
  4. Wan, Weiguo & Lee, Hyo Jong. (2019). A Joint Training Model for Face Sketch Synthesis. Applied Sciences. 9. 1731. doi: 10.3390/app9091731. [CrossRef] [Google Scholar]
  5. S. Sharma, M. Bhatt and P. Sharma, “Face Recognition System Using Machine Learning Algorithm,” 2020 5th International Conference on Communication and Electronics Systems(ICCES), 2020, pp. 1162–1168, doi: 10.1109/ICCES48766.2020.9137850. [Google Scholar]
  6. Patil S., Shubhangi D.C. (2017) Forensic sketch based face recognition using geometrical face model. In: 2017 2nd InternationalConference for Convergence in Technology (I2CT). pp 450–456 [CrossRef] [Google Scholar]
  7. Karasolak, Mustafa & Choupani, Roya. (2019). Face Photograph Recognition via Generation from Sketches using Convolutional Neural Networks. International Journal of Multimedia and Image Processing. 9. 459–465. doi: 10.20533/ijmip.2042.4647.2019.0057 [CrossRef] [Google Scholar]
  8. Charlie Frowd, Anna Petkovic, Kamran Nawaz and Yasmeen Bashir, “Automating the Processes Involved in Facial Composite Production and Identification” Symposium on Bio-inspired Learning and Intelligent Systems for Security, 2009. [Google Scholar]
  9. Liu J., Bae S., Park H., et al. (2015) Face photo-sketch recognition based on joint dictionary learning. In: 2015 14th IAPR International Conference on Machine Vision Applications (MVA). pp 77–80 [CrossRef] [Google Scholar]
  10. B. Klare and A. Jain, “Sketch to photo matching: a featurebased approach”, SPIE Conference on Biometric Technology for Human Identification, 2010. [Google Scholar]
  11. Uhl R.G., da Vitoria Lobo N., Kwon Y.H. (1994) Recognizing a facial image from a police sketch. In: Proceedings of 1994 IEEE Workshop on Applications of Computer Vision. pp 129–137. [CrossRef] [Google Scholar]
  12. D. Liu, C. Peng, N. Wang, J. Li and X. Gao, “Composite face sketch recognition based on components,” 2019 8th International Conference on Wireless Communications & Signal Processing (WCSP), 2019, pp. 1–5, doi: 10.1109/WCSP.2016.7752734. [Google Scholar]
  13. Bin Sheng, Ping Li, Chenhao Gao, Kwan-Liu Ma, “Deep Neural Representation Guided Face Sketch Synthesis”, IEEE Trans. Vis. Comput. Graph., vol. 25, no. 12, pp. 3216–3230, Dec.2019. [CrossRef] [Google Scholar]
  14. N. Wang, X. Gao, L. Sun, and J. Li, “Bayesian face sketch synthesis,” IEEE Trans. Image Process., vol. 26, no. 3, pp. 1264–1274, Mar. 2017. [CrossRef] [MathSciNet] [Google Scholar]
  15. Hamed Kiani Galoogahi and Terence Sim, “Face Sketch Recognition By Local Radon Binary Pattern: LRBP”, 19th IEEE International Conference on ImageProcessing, 2012. [Google Scholar]
  16. Wang X., Tang X. (2009) Face photo-sketch synthesis and recognition. IEEE Trans Pattern Anal Mach Intell 31: 1955–1967. [CrossRef] [Google Scholar]
  17. Zhang M., Wang R., Gao X., et al. (2019) Dual-transfer face sketch--photo synthesis. IEEE Trans Image Process 28:642–657 [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.