Open Access
Issue
ITM Web Conf.
Volume 44, 2022
International Conference on Automation, Computing and Communication 2022 (ICACC-2022)
Article Number 03043
Number of page(s) 6
Section Computing
DOI https://doi.org/10.1051/itmconf/20224403043
Published online 05 May 2022
  1. Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka, A., Sung, G., Chang, C. L., & Grundmann, M. (2020). Mediapipe hands: On-device real-time hand tracking. arXiv preprint arXiv:2006.10214. [Google Scholar]
  2. Conner, C., & Poor, G. M. (2016, May). Correcting exercise form using body tracking. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (pp. 3028–3034). [CrossRef] [Google Scholar]
  3. Lee, E. C., Fragala, M. S., Kavouras, S. A., Queen, R. M., Pryor, J. L., & Casa, D. J. (2017). Biomarkers in sports and exercise: tracking health, performance, and recovery in athletes. Journal of strength and conditioningresearch, 51(10), 2920. [CrossRef] [Google Scholar]
  4. Van Der Zee, M. D., Van Der Mee, D., Bartels, M., & De Geus, E. J. (2019). Tracking of voluntary exercise behaviour over the lifespan. International Journal of Behavioral Nutrition and Physical Activity, 16(1), 1–11. [CrossRef] [Google Scholar]
  5. Shpigelman, L., Lalazar, H., & Vaadia, E. (2008). Kernel-ARMA for hand tracking and brainmachine interfacing during 3D motor control. Advances in neural information processing systems, 21, 1489–1496. [Google Scholar]
  6. Ahmad, A., Migniot, C., & Dipanda, A. (2019). Hand pose estimation and tracking in real and virtual interaction: A review. Image and Vision Computing, 89, 35–49. [CrossRef] [Google Scholar]
  7. Rahman, S. U., Afroze, Z., & Tareq, M. (2014). Hand Gesture Recognition Techniques For Human Computer Interaction Using OpenCv. International Journal of Scientific and research publications, 4(12). [Google Scholar]
  8. Pedersen, B. K., & Saltin, B. (2015). Exercise as medicine-evidence for prescribing exercise as therapy in 26 different chronic diseases. Scandinavian journal of medicine & science in sports, 25, 1–72. [CrossRef] [Google Scholar]
  9. McGloin, R., Embacher, K., & Atkin, D. (2017). Health and exercise-related predictors of distance- tracking app usage. Health Behavior and Policy Review, 4(4), 306–317. [CrossRef] [Google Scholar]
  10. Voth, E. C., Oelke, N. D., & Jung, M. E. (2016). A theory-based exercise app to enhance exercise adherence: a pilot study. JMIR mHealth and uHealth, 4(2), e4997. [Google Scholar]
  11. Mohamed Abdur Rahman, Ahmad M. Qamar, Mohamed, A. Ahmed, M. Ataur Rahman, and Saleh Basalamah. 2013. Multimedia Interactive Therapy Environment for Children Having Physical Disabilities. In Proceedings of the 3rd ACM Conference on Inter- national Conference on Multimedia Retrieval (ICMR’13). ACM, New York, NY, USA, 313–314. [CrossRef] [Google Scholar]
  12. Derrick Cheng, Pei-Yu Chi, Taeil Kwak, Björn Hartmann, and Paul Wright. 2013. Bodytracking Camera Control for Demonstration Videos. In CHI '13 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’13). ACM, New York, NY, USA, 1185–1190. DOI: http://dx. doi.org/10.1145/2468356.2468568 [CrossRef] [Google Scholar]
  13. Han Ding, Longfei Shangguan, Zheng Yang, Jinsong Han, Zimu Zhou, Panlong Yang, Wei Xi, and Jizhong Zhao. 2015. FEMO: A Platform for Free- weight Ex- ercise Monitoring with RFIDs. In Proceedings of the13th ACM Conference on Embedded Networked Sensor Systems (SenSys ’15). ACM, New York, NY, USA, 141–154. [CrossRef] [Google Scholar]
  14. Kyle Rector, Cynthia L. Bennett, and Julie A. Kientz. 2013. Eyes-free Yoga: An Exergame Using Depth Cameras for Blind & Low Vision Exercise. In Pro- ceedings of the 15th International ACM SIGACCESS Conference on Computers and Accessibility(ASSETS’13). ACM, New York, NY, USA, Article 12, 8 pages. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.