Open Access
ITM Web Conf.
Volume 44, 2022
International Conference on Automation, Computing and Communication 2022 (ICACC-2022)
Article Number 03042
Number of page(s) 6
Section Computing
Published online 05 May 2022
  1. J.A. Kogan, D. Margoliash, The Journal of the Acoustical Society of America 103, 2185 (1998) [Google Scholar]
  2. D.E. Balmer, S. Gillings, B. Caffrey, R. Swann, I. Downie, R. Fuller, Bird Atlas 2007-11: the breeding and wintering birds of Britain and Ireland (BTO Thetford, 2013) [Google Scholar]
  3. C.H. Lee, Y.K. Lee, R.Z. Huang, Journal of Information Technology and Applications 1, 17 (2006) [Google Scholar]
  4. M. Likitha, S.R.R. Gupta, K. Hasitha, A.U. Raju, Speech based human emotion recognition using MFCC, in 2017 international conference on wireless communications, signal processing and networking (WiSPNET) (IEEE, 2017), pp. 2257–2260 [CrossRef] [Google Scholar]
  5. F. Briggs, R. Raich, X.Z. Fern, Audio classification of bird species: A statistical manifold approach, in 2009 Ninth IEEE international conference on data mining (IEEE, 2009), pp. 51–60 [CrossRef] [Google Scholar]
  6. A. Coates, A.Y. Ng, in Neural networks: Tricks of the trade (Springer, 2012), pp. 561–580 [Google Scholar]
  7. P. Somervuo, A. Härmä, Analyzing bird song syllables on the self-organizing map, in Workshop on SelfOrganizing Maps (WSOM03) (2003) [Google Scholar]
  8. V. Tiwari, International journal on emerging technologies 1, 19 (2010) [Google Scholar]
  9. A. Selin, J. Turunen, J.T. Tanttu, EURASIP Journal on Advances in Signal Processing pp. 1–9 (2006) [Google Scholar]
  10. Y. LeCun, Y. Bengio, G. Hinton, Nature 521, 436 (2015) [Google Scholar]
  11. S. Wei, S. Zou, F. Liao et al., A comparison on data augmentation methods based on deep learning for audio classification, in Journal of Physics: Conference Series (IOP Publishing, 2020), Vol. 1453, p. 012085 [CrossRef] [Google Scholar]
  12. W. McKinney et al., Python for high performance and scientific computing 14, 1 (2011) [Google Scholar]
  13. L. Breiman, Machine learning 45, 5 (2001) [Google Scholar]
  14. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard et al., (TensorFlow): A System for (Large-Scale) Machine Learning, in 12th USENIX symposium on operating systems design and implementation (OSDI 16) (2016), pp. 265–283 [Google Scholar]
  15. Y. Even-Zohar, D. Roth, arXiv preprint cs/0106044 (2001) [Google Scholar]
  16. C. Kwan, G. Mei, X. Zhao, Z. Ren, R. Xu, V. Stanford, C. Rochet, J. Aube, K. Ho, Bird classification algorithms: Theory and experimental results, in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2004), Vol. 5, pp. 5–289 [Google Scholar]
  17. B. McFee, C. Raffel, D. Liang, D.P. Ellis, M. McVicar, E. Battenberg, O. Nieto, librosa: Audio and music signal analysis in python, in Proceedings of the 14th python in science conference (Citeseer, 2015), vol. 8, pp. 18–25 [CrossRef] [Google Scholar]
  18. F. Yang, X. Wang, H. Ma, J. Li, BMC Medical Informatics and Decision Making 21, 1 (2021) [MathSciNet] [Google Scholar]
  19. J.T. Hancock, T.M. Khoshgoftaar, Journal of big data 7, 1 (2020) [Google Scholar]
  20. F. Briggs, B. Lakshminarayanan, L. Neal, X.Z. Fern, R. Raich, S.J. Hadley, A.S. Hadley, M.G. Betts, The Journal of the Acoustical Society of America 131, 4640 (2012) [Google Scholar]
  21. P. Somervuo, A. Harma, S. Fagerlund, IEEE Transactions on Audio, Speech, and Language Processing 14, 2252 (2006) [CrossRef] [Google Scholar]
  22. M.A. Acevedo, C.J. Corrada-Bravo, H. Corrada-Bravo, L.J. Villanueva-Rivera, T.M. Aide, Ecological Informatics 4, 206 (2009) [Google Scholar]
  23. J. Pons, X. Serra, Randomly weighted cnns for (music) audio classification, in ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal processing (ICASSP) (IEEE, 2019), pp. 336–340 [CrossRef] [Google Scholar]
  24. J. Devlin, M.W. Chang, K. Lee, K. Toutanova, arXiv preprint arXiv:1810.04805 (2018) [Google Scholar]
  25. M. Stracy, O. Snitser, I. Yelin, Y. Amer, M. Parizade, R. Katz, G. Rimler, T. Wolf, E. Herzel, G. Koren et al., Science 375, 889 (2022) [Google Scholar]
  26. Z. Deng, B. Wang, Y. Xu, T. Xu, C. Liu, Z. Zhu, IEEE Access 7, 88058 (2019) [Google Scholar]
  27. M. Aaron, M. Elad, Signal Processing, IEEE Transactions on 54, 4311 (2006) [Google Scholar]
  28. T.M. Aide, C. Corrada-Bravo, M. Campos-Cerqueira, C. Milan, G. Vega, R. Alvarez, PeerJ 1, e103 (2013) [Google Scholar]
  29. R. Caruana, A. Niculescu-Mizil, An empirical comparison of supervised learning algorithms, in Proceedings of the 23rd international conference on Machine learning (2006), pp. 161–168 [CrossRef] [Google Scholar]
  30. S.S. Stevens, J. Volkmann, E.B. Newman, The journal of the acoustical society of america 8, 185 (1937) [Google Scholar]
  31. K. Seyerlehner, G. Widmer, P. Knees, Frame level audio similarity-a codebook approach, in Proc. of the 11th Int. Conf, on Digital Audio Effects (DAFx- 08) (2008), p. 31 [Google Scholar]
  32. P. Minka, Tech. rep., Tech. Rep., Microsoft Research (2003) [Google Scholar]
  33. R.E. Kass, P.W. Vos, Geometrical foundations of asymptotic inference (John Wiley & Sons, 2011) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.