Open Access
ITM Web Conf.
Volume 44, 2022
International Conference on Automation, Computing and Communication 2022 (ICACC-2022)
Article Number 03041
Number of page(s) 6
Section Computing
Published online 05 May 2022
  1. Hassan Ali Khan, Wu Jue, Muhammad Mushtaq and Muhammad Umer Mushtaq “Brain tumor classification in MRI image using convolutional neural net- work” (2020) [Google Scholar]
  2. Shraddha S. More; Mansi Ashok Mange; Mitheel Sandip Sankhe; Shwethali Santosh Sahu “Convolutional Neural Network based Brain Tumor Detection” IEEE (2021) [Google Scholar]
  3. Sakshi Ahuja, B., K. Panigrahi, and Tapan Gandhi, “Transfer Learning Based Brain Tumor Detection and Segmentation using Superpixel Technique,” in International Conference. [Google Scholar]
  4. Hajar Cherguif, Jamal Riffi, Mohamed Adnane Mahrez, Ali Yahaouy, and Hamid Tairi, “Brain Tumor Segmentation Based on Deep Learning,” in International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS), IEEE, (2019). [Google Scholar]
  5. Chirodip Lodh Choudhary, Chandrakanta Mahanty, Raghvendra Kumar and Borjo Kishore Mishra, “Brain Tumor Detection and Classification using Convolutional Neural Network and Deep Neural Network,” in International Conference on Computer Science, Engineering and Applications (ICCSEA), IEEE, (2020). [Google Scholar]
  6. Ahmad Habbie Thias, Donny Danudirdjo, Abdullah Faqih Al Mubarok, Tati Erawati Rajab, and Astri Han-Dayani, “Brain Tumor Semi-automatic Segmentation on MRI T1-weighted Images using Active Contour Models,” in International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE), IEEEE, (2019). [Google Scholar]
  7. Neelum Noreen, Sellapan Palaniappam, Abdul Qayyum, Iftikhar Ahmad, Muhammad Imran, “Attention-Guided Version of 2D UNet for Automatic Brain Tumor Segmentation,” IEEE Access, Volume: 8. [Google Scholar]
  8. Rajeshwar Nalbalwar Umakant Majhi Raj Patil Prof. Sudhanshu Gonge 2014 Detection of Brain Tumor by using ANN International Journal of Research in Advent Technology (2014) [Google Scholar]
  9. Fausto Milletari Seyed-Ahmad Ahmadi Christine Kroll Annika Plate Verena Rozanski Juliana Maiostre Johannes Levin Olaf Dietrich Birgit Ertl-Wagner Kai Bötzel, Nassir Navab Hough-Cnn: Deep learning for segmentation of deep brain regions in MRI and ultrasound Elsevier Inc 164 92–102. (2016) [Google Scholar]
  10. Fatih Özyurt Eser Sert Engin Avci Esin Dogantekin. Brain tumor detection based on Convolutional Neural Network with neutrosophic expert maximum fuzzy sure entropy Elsevier Ltd (2019) [Google Scholar]
  11. S. S. Hunnur, A. Raut and S. Kulkarni, “Implementation of image processing for detection of brain tumors,” International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, ICCMC. 2017. 8282559. (2017) [Google Scholar]
  12. Pranian Afshar, Arash Mohammadi, and Konstantinos N. Plataniotis, “BayesCap: A Bayesian Approach to Brain Tumor Classification Using Capsule Networks,” IEEE Signal Processing Letters (Volume 27),(2020). [Google Scholar]
  13. Moumen T. Elmegy, and Khaled, M. Abo-El Magad, “A Multiple Classifiers System for AutomaticMultimodal Brain Tumor Segmentation,” in IEEE Access, (2019). [Google Scholar]
  14. Balakumaresan Ragupathy, and Manivannan Karunakaran, “A deep learning model integrating convolution neural network and multiple kernel K means clustering for segmenting brain tumor in magnetic resonance images,”in Int J Imaging Syst Technol. Wiley Periodicals LLC, (2020). [Google Scholar]
  15. S. Krishnakumar, K. Manivannan, “Efective segmentation and classifcation of brain tumor using rough K means algorithm and multi kernel SVM in MR images”, in Journal of Ambient Intelligence and Humanized Computing, Springer (2020). [Google Scholar]
  16. Navoneel Chakrabarty (2019, November). Brain MRI Images for Brain Tumor Detection. from [Google Scholar]
  17. Navoneel Chakrabarty 2017, November). R vs. Python: The Kitchen Gadget Test, Version 1. Retrieved December 20, 2017 from [Google Scholar]
  18. Arya, Madhvi, and Reecha Sharma. “Brain Tumor Detection through MR Images: A Review of Segmentation Techniques.” International Journal of Computer Applications 975 (2016). [Google Scholar]
  19. Baljinder Singh, Pankaj Aggarwal “Detection of brain tumor using modified mean-shift based fuzzy c- mean segmentation from MRI Images”, © IEEE, p.p. 536–545 (2017). [Google Scholar]
  20. Garima Singh, M.A. AnsariDr. “Efficient Detection of Brain Tumor from MRIs Using K-Means Segmentation and Normalized Histogram”, IEEE, (2016). [Google Scholar]
  21. Seetha, J., and S.S. Raja. Brain Tumor Classification Using Convolutional Neural Networks. Biomedical Pharmacology Journal, 11(7), 1457–1461. (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.