Open Access
ITM Web Conf.
Volume 44, 2022
International Conference on Automation, Computing and Communication 2022 (ICACC-2022)
Article Number 03040
Number of page(s) 5
Section Computing
Published online 05 May 2022
  1. J. Yu, X. Le et al. ‘Sales Forecast for Amazon Sales Based on Different Statistics Methodologies'(2016) [Google Scholar]
  2. K.J. Ferreira, B.H.A. Lee, D. Simchi-Levi et al. ‘Analytics for an Online Retailer: Demand Forecasting and Price Optimisization' (2016) [Google Scholar]
  3. M. Bohanec, M.K. Borstnar, M. Robnik-Sikonja et al. ‘Explaining machine learning models in sales prediction’ (2017) [Google Scholar]
  4. Zhao, K. and Wang, C. (2017) ‘Sales Forecast in E-commerce using Convolutional Neural Network’, (August 2017). [Google Scholar]
  5. Li, M., Ji, S. and Liu, G. (2018) ‘Forecasting of Chinese ECommerce Sales: An Empirical Comparison of ARIMA, Nonlinear Autoregressive Neural Network, and a Combined ARIMA-NARNN Model’ [Google Scholar]
  6. M. Holmberg, P. Hallden et al. ‘Machine Learning for Restaurant Sales Forecast’ (2018) [Google Scholar]
  7. Bandara, K. et al. (2019) ‘Sales Demand Forecast in Ecommerce using a Long Short- Term Memory Neural Network Methodology’ [Google Scholar]
  8. N. Kumar, A. Jhensanam, A. Md Hossin, B. Chanthamith et al. ‘Challenges and Opportunities of E-commerce in India’ (2018) [Google Scholar]
  9. B. Pavlyshenko et al. ‘Machine-Learning Models for Sales Time Series Forecasting’ (2019) [Google Scholar]
  10. Bhavna Galhotra and Ayushi Dewan, ‘Impact of COVID-19 on digital platforms and change in E-commerce shopping trends’ (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.