Open Access
Issue
ITM Web Conf.
Volume 44, 2022
International Conference on Automation, Computing and Communication 2022 (ICACC-2022)
Article Number 03057
Number of page(s) 6
Section Computing
DOI https://doi.org/10.1051/itmconf/20224403057
Published online 05 May 2022
  1. Bianca de Almeida-Pititto, Patricia M. Dualib, Lenita Zajdenverg, JoanaRodrigues Dantas, Filipe Dias de Souza, Melanie Rodacki and Marcello Casaccia Bertoluci on behalf of Brazilian Diabetes Society Study Group (SBD), “Severity And Mortality Of COVID 19”, In Patients With Diabetes, Hypertension And CardiovascularDisease: A Meta-analysis, Diabetology & Metabolic Syndrome Research, (2020) [Google Scholar]
  2. R. Indrakumari, T. Poongodi, Soumya Ranjan Jena, “Heart Disease Prediction using Exploratory Data Analysis, International Conference” On Smart Sustainable Intelligent Computingand Applications under (ICITETM 2020) [Google Scholar]
  3. Senthilkumar Mohan, Chandrasegar Thirumalail, and Gautam Srivastava 2,3, (Member,IEEE), “Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques”, (IEEE ACCESS) [Google Scholar]
  4. Aishwarya Majumdar, Dr. Vaidehi, “Diabetes Prediction using Machine Learning Algorithms, International Conference” On Recent Trends In Advanced Computing (2019, ICRTAC2019) [Google Scholar]
  5. Emma Barron, Chirag Bakhai, Partha Kar, Andy Weaver, Dominique Bradley, Hassan Ismail, Peter Knighton, Naomi Holman, Kamlesh Khunti, Naveed Sattar, Nicholas J Wareham, Bob Young, Jonathan Valabhji, Associations of type 1 and type 2 diabetes with COVID-19 related mortality in England: a whole-population study, (Lancet Diabetes Endocrinol 2020) [Google Scholar]
  6. Quan Zou, Kaiyang Qu, Yamei Luo, Dehui Yin, Ying Ju, Hua Tang, “Predicting Diabetes Mellitus With Machine Learning Techniques,” Bioinformatics and Computational Biology, (Frontier Genetics Journal, 2018) [Google Scholar]
  7. Md. Kamrul Hasan, Md. Ashraful Alam, Dola Das, Eklas Hossain, (Senior Member, IEEE), and Mahmudul Hasan, “Diabetes Prediction Using Ensembling of Different MachineLearning Classifiers”, (IEEE ACCESS 2020) [Google Scholar]
  8. Jyoti Soni, Ujma Ansari, Dipesh Sharma, Sunita Soni, Predictive Daa Mining for Medical Diagnosis”, International Jourmal of Computer Applications, (Volume 17, #8, 2011) [Google Scholar]
  9. Himanshu Sharma, M.A. Rizvi, “Prediction of Heart Disease using Machine Learning Algorithms: A Survey”, International Journal on Recent and Innovation Trends in Computing and Communication (2016) [Google Scholar]
  10. Baban U. Rindhe, Nikita Ahire, Rupali Patil, Shweta Gagare, Manisha Darade, “Heart Disease Prediction Using Machine Learning”, IJARSCT, (2021) [Google Scholar]
  11. Nabaouia Louridi, Samira Douzi, Bouabid El Ouahidi, “Machine Learning-Based Identifcation Of Patients With A Cardiovascular Defect”, Journal of Big Data (2021) [Google Scholar]
  12. Dhai Eddine Salhi, Abdelkamel Tari, M. Tahar Kechadi, “Using Machine learning for heart disease prediction”, researchgate.net. [Google Scholar]
  13. Minakshi R. Rajput, Sushant S. Khedgikar, “Diabetes prediction and analysis using medical attributes: A machine learning approach”, Journal of Xian University of Architecture and Technology. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.