Open Access
Issue
ITM Web Conf.
Volume 45, 2022
2021 3rd International Conference on Computer Science Communication and Network Security (CSCNS2021)
Article Number 01036
Number of page(s) 12
Section Computer Technology and System Design
DOI https://doi.org/10.1051/itmconf/20224501036
Published online 19 May 2022
  1. P. Badura. Virtual bacterium colony in 3D image segmentation. Computerized Medical Imaging and Graphics, vol.65, pp.152-166, 2017. [Google Scholar]
  2. Z. Jianpeng, X. Yutong, W. Yan, X. Yong. Inter-Slice Context Residual Learning for 3D Medical Image Segmentation, IEEE Transactions on Medical Imaging, vol.40, pp.661-672, 2021. [CrossRef] [Google Scholar]
  3. W. Yan, L. Chen-Luh, M. Jan D. 3D image segmentation for analysis of multisize particles in a packed particle bed. Powder Technology, vol.301, pp.160-168, 2016. [Google Scholar]
  4. S. Kichenassamy, A. Kumar, P. Olver, A Tannenbaum, A Yezzi. Gradient flows and geometric active contour models[C]. International conference on computer vision, pp.810-815, 1995. [CrossRef] [Google Scholar]
  5. Y. Rathi, N. Vaswani, A. Tannenbaum, A. Yezzi Particle filtering for geometric active contours with application to tracking moving and deforming objects[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.2, pp.2-9, 2005. [CrossRef] [Google Scholar]
  6. M. Subasic. Level Set Methods and Fast Marching Methods[J]. computer and information technology, vol.11, pp.79-79, 2003. [CrossRef] [Google Scholar]
  7. S. Osher. Level Set Methods and Dynamic Implicit Surfaces. Level sets methods and dynamic implicit surfaces. Springer. 2003. [CrossRef] [Google Scholar]
  8. T. F. Chan and L. A. Vese. Active contours without edges[J]. IEEE Transactions on Image Processing, vol.10, pp: 266-277, 2001. [CrossRef] [Google Scholar]
  9. A. Tsai, A. Yezzi, A. Willsky. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, vol.10, pp:1169-86, 2001. [CrossRef] [Google Scholar]
  10. Y. H. Qian, D. D’Humières, P. Lallemand. Lattice BGK models for Navier -Stokes equation. Europhysics Letters, vol.17, pp: 479-484, 1992. [CrossRef] [Google Scholar]
  11. L. Li, R. Mei, and J. F. Klausner. Lattice Boltzmann models for the convection diffusion equation: D2Q5 vs, D2Q9. International Journal of Heat & Mass Transfer, vol. 108, pp:41-62, 2017. [CrossRef] [Google Scholar]
  12. A. Mohamad. Lattice Boltzmann method: fundamentals and engineering applications with computer codes. Springer Science & Business Media, 2011. [Google Scholar]
  13. G. Zhaoli, Z. Chuangguang, S. Baochang. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chinese physics, vol.11, pp:366-374, 2002. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.