Open Access
Issue |
ITM Web Conf.
Volume 47, 2022
2022 2nd International Conference on Computer, Communication, Control, Automation and Robotics (CCCAR2022)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 10 | |
Section | Algorithm Optimization and Application | |
DOI | https://doi.org/10.1051/itmconf/20224702003 | |
Published online | 23 June 2022 |
- Turk M A, Pentland A P. Recognition in face space[C]//Intelligent Robots and Computer Vision IX: Algorithms and Techniques. International Sociey for Optics and Photonics, 1991, 1381: 43-54. [Google Scholar]
- Gkioxari G, Hariharan B, Girshick R, et al. R-CNNs for Pose Estimation and Action Detection[J]. Computer ence, 2014. [Google Scholar]
- Girshick R. Fast R-CNN[J]. arXiv e-prints, 2015. [Google Scholar]
- Ren S, He K, Girshick R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. 2017. [Google Scholar]
- Purkait P, Zhao C, Zach C. SPP-Net: Deep Absolute Pose Regression with Synthetic Views[C]// British Machine Vision Conference(BMVC 2018). 2017. [Google Scholar]
- Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, Real-Time Object Detection[J]. IEEE, 2016. [Google Scholar]
- Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger[C]// IEEE Conference on Computer Vision & Pattern Recognition. IEEE, 2017:6517-6525. [Google Scholar]
- Redmon J, Farhadi A. YOLOv3: An Incremental Improvement[J]. arXiv e-prints, 2018. [Google Scholar]
- Bochkovskiy A, Wang C Y, Liao H. YOLOv4: Optimal Speed and Accuracy of Object Detection[J]. 2020. [Google Scholar]
- Ge Z, Liu S, Wang F, et al. Yolox: Exceeding yolo series in 2021[J]. arXiv preprint arXiv:2107.08430, 2021. [Google Scholar]
- Wang X, Xie L, Dong C, et al. Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data[J]. 2021. [Google Scholar]
- Dong, Image Super-Resolution Using Deep Convolutional Networks. 2016. [Google Scholar]
- J Kim, Shin M J, D Kim, et al. Performance Comparison of SRCNN, VDSR, and SRDenseNet Deep Learning Models in Embedded Autonomous Driving Platforms[C]// 2021 International Conference on Information Networking (ICOIN). 2021. [Google Scholar]
- Radford A, Metz L, Chintala S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[J]. Computer ence, 2015. [Google Scholar]
- Kim J, Lee J K, Lee K M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks[C]// IEEE Conference on Computer Vision & Pattern Recognition. IEEE, 2016. [Google Scholar]
- Jie H, Li S, Gang S. Squeeze-and-Excitation Networks [J]. IEEE, 2018. [Google Scholar]
- Wang Q, Wu B, Zhu P, et al. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2020. [Google Scholar]
- Liu Y, Wang Y, Wang S, et al. CBNet: A Novel Composite Backbone Network Architecture for Object Detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):11653-11660. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.