Open Access
ITM Web Conf.
Volume 47, 2022
2022 2nd International Conference on Computer, Communication, Control, Automation and Robotics (CCCAR2022)
Article Number 02011
Number of page(s) 15
Section Algorithm Optimization and Application
Published online 23 June 2022
  1. Huang P,Wang D,MengZ,et al. Impact Dynamic Modeling and Adaptive Target Capturing Control for Tethered Space Robots with Uncertainties[J].IEEE/ASME Transactionson Mechatronics, 2016, 21(3): 2260–2271. [CrossRef] [Google Scholar]
  2. Ma G,Jiang Z, Li H, et al. Hand-eye Servo and Impedance Control for Manipulator Arm to Capture Target Satellite Safely[J]. Robotica, 2015, 33(3): 848–864. [CrossRef] [Google Scholar]
  3. Zhang L, Jia Q, Chen G, et al. Pre-impact Trajectory Planning for Minimizing Base Attitude Disturbance in Space Manipulator Systems for a Capture Task[J]. Chinese Journal of Aeronautics, 2015, 28(3): 1199–1208. [CrossRef] [Google Scholar]
  4. Dong G, Zhu Z H. Predictive Visual Servo Kinematic Control for Autonomous Robotic Capture of Non-cooperativeSpace Target[J]. ActaAstronautica, 2018. [Google Scholar]
  5. Aghili, F. Coordination Control of a Free-flying Manipulator and its Base Attitude to Capture and Detumble a Non-cooperativeSatellite. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009: 2365 – 2372. [Google Scholar]
  6. S. Dubowsky, M.A. Torres, Path Planning for Space Manipulator to Minimize Spacecraft Attitude Disturbances. IEEE Int. C. on Robotics and Autom., Sacramento CA, 1991, pp.2522–2528. [Google Scholar]
  7. E Papadopoulos, S. Dubowsky. Coordinated Manipulator / Spacecraft Motion Control for Space Robotic System s. IEEE Proc Robotics Automat April 1991:1696-1701. [Google Scholar]
  8. N. Inaba and M. Oda. Autonomous Satellite Capture by a Space Robot:World First on-orbit Experiment on a Japanese Robot Satellite ETS-VII. Proc. IEEE Int. Conf. Robot. Autom., 2000:1169 - 1174. [Google Scholar]
  9. M. D. Lichter and S.Dubowsky. State, Shape, and Parameter Estimation of Space Object from Range Images. Proc. IEEE Int. Conf. Robot. Autom., Apr. 2004: 2974 - 2979. [Google Scholar]
  10. Z. Ma, O. Ma, and B. Shashikanth. Optimal Approach to and Alignment with a Rotating Rigid Body for Capture[J]. J. Astron. Sci., 2007 55(4): 407 - 419. [CrossRef] [Google Scholar]
  11. F. Aghili and K. Parsa. An Adaptive Vision System for Guidance of a Robotic Manipulator to Capture a Tumbling Satellite with Unknown Dynamics. Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Nice, France, Sep. 2008: 3064–3071. [Google Scholar]
  12. P. Singla, K. Subbarao, and J. L. Junkins. Adaptive Output Feedback Control for Spacecraft Rendezvous and Docking under Measurement Uncertainty [J]. AIAA J. Guid., Control, Dyn., 2006, 29(4): 892 - 902. [CrossRef] [Google Scholar]
  13. Xu W F, Li C, Wang X Q, et al. Study on Nonholonomic Cartesian Path Planning of Free Floating Space Robotic System [J]. Advanced Robotics, 2009, 23(1) :113-143. [Google Scholar]
  14. LIU Zheng xiong,HUANG Pan feng,YAN Jie. Trajectory Planning of Space Manipulator Using PSO[J]. Computer Simulation [J],2010,27(11):172-175. [Google Scholar]
  15. SHI Zhong, WANG Yong zhi, HU Qing lei. A Polynomial Interpolation Based Particle Swarm Optimization Algorithm for Trajectory Planning of Free-Floating Space Robot[J]. Journal of Astronautics,2011,32(7):1516-1521. [Google Scholar]
  16. SUN Jun, FENG Bin XU Wenbo. Particle Swam Optimization with Particles Having Uqantum Behavior[J].Evolutionary Computation, 2004, 1(1):325-331. [Google Scholar]
  17. Sun J, Fang W, Wu X J, et al. Quantum-Behaved Particle Swarm Optimization: Principle and Application[M]. Beijing: Tsinghua University Press, 2011: 31-68. [Google Scholar]
  18. Huang L, Xi M L, Sun J. Method of Trajectory Tracking Control for Mobile Robots with Improved QPSO Algorithm [J]. Computer Engineering and Applications, 2012, 48(3): 230-236. [Google Scholar]
  19. SHI Ye, LIANG Bin, WANG Xueqian, XU Wenfu. Cartesian Non-holonomic Path Planning of Space Robot Based on Quantum-behaved Particle Swarm Optimization Algorithm [J]. JOURNAL OF MECHANICAL ENGINEERING, 2011, 47(23):65-73. [CrossRef] [Google Scholar]
  20. WANG Ming, HUANG Pan feng, LIU Zheng xiong, et al. Trajectory Planning for Minimizing Base Reaction of Free-Floating Space Robot[J]. Journal of Astronautics, 2011(10): 2152-2157. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.