Open Access
Issue
ITM Web Conf.
Volume 47, 2022
2022 2nd International Conference on Computer, Communication, Control, Automation and Robotics (CCCAR2022)
Article Number 02033
Number of page(s) 6
Section Algorithm Optimization and Application
DOI https://doi.org/10.1051/itmconf/20224702033
Published online 23 June 2022
  1. Yang F,Liu Y,Yu X,et al.Automatic detection of rumor on sina weibo[C].Processdings of the ACM SIGKDD workshop on Mining Data Semantics.2012:1–7. [Google Scholar]
  2. Kwon S,Cha M,Jung K,et al;Prominent featurea of rumor propagation in online social media[C].2013 IEEE 12th international conference on Data Mining.2013:1103–1108. [Google Scholar]
  3. Zhao Z, Resnick P, Mei Q. Enquairing minds: Early detection of rumors in social media from enquiry posts[C]. Processdings of the 24th international conference on world wide web.2015: 1395–1405. [Google Scholar]
  4. Guo c, Cao j, Zhang x. Exploiting Emotions for Fake News Detection on Social Media[j], Arxiv preprint arxiv: 1903. 01728,2019. [Google Scholar]
  5. Yu F, Liu Q, Wu s, et al. A convolutional approach for misinformation identification[J].2017 [Google Scholar]
  6. Chen T, Wu L, Li X. Call attention to rumors: Deep attention based Recurrent Neural networks for early rumor detection [J]. Arxiv preprint arxiv: 1704. 0597352017. [Google Scholar]
  7. Zhang Z, Zhuang F, Zhu H, et al. Relational Graph Neural Network with Hierarchical Attention for Knowledge Graph Completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(05): 9612–9619. [Google Scholar]
  8. Wu, K, Yang, S, Zhu. False rumors detection on sina weibo by propagation structures[C]. In 2015 IEEE 31st international conference on data engineering, 651–662. IEEE. [Google Scholar]
  9. Ma j, Gao W, Mitra P, et al. Detection Rumors from Microblogs with Recurrent Neural Networks[C]Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York: IJCAI, 2016: 3818–3824 [Google Scholar]
  10. Wang K, Shen W, Yang Y. Relational Graph Attention Network for Aspect-based Sentiment Analysis[C], Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics(ACL) 2020:3229–3238. [Google Scholar]
  11. Ma j,Gao W, Mitra Pl. Detection Rumors from Microblogs with Recurrent Neural Networks[C] Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York: IJCAI, 2016: 3818–3824 [Google Scholar]
  12. Chen T,Wu L,Li X,et al. Call attention to rumors: Deep attention based Recurrent Neural networks for early rumor detection[J]. Arxiv preprint arxiv: 1704. 0597352017. [Google Scholar]
  13. Wu K, Yang S. False rumors detection on sina weibo by propagation structures[C]. In 2015 IEEE 31st international conference on data engineering, 651–662. IEEE. [Google Scholar]
  14. Ma J, Gao W, Wei Z. Detect rumors using time series of social context information on microblogging websites[C]. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, 1751–1754. [Google Scholar]
  15. Ma J, Gao W. Rumor detection on twitter with tree-structured recursive neural networks[C]. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 1980–1989. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.