Open Access
Issue
ITM Web Conf.
Volume 47, 2022
2022 2nd International Conference on Computer, Communication, Control, Automation and Robotics (CCCAR2022)
Article Number 03033
Number of page(s) 7
Section Control Technology and Robotics Technology
DOI https://doi.org/10.1051/itmconf/20224703033
Published online 23 June 2022
  1. Hasan M Z, Kane C L. Colloquium: topological insulators[J]. Reviews of modern physics, 2010, 82(4): 3045. [CrossRef] [Google Scholar]
  2. Qi X L, Zhang S C. Topological insulators and superconductors[J]. Reviews of Modern Physics, 2011, 83(4): 1057. [CrossRef] [Google Scholar]
  3. Qi X L, Zhang S C. The quantum spin Hall effect and topological insulators[J]. arXiv preprint arXiv:1001.1602, 2010. [Google Scholar]
  4. Yan B, Zhang S C. Topological materials[J]. Reports on Progress in Physics, 2012, 75(9): 096501. [CrossRef] [Google Scholar]
  5. Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells[J]. science, 2006, 314(5806): 1757–1761. [CrossRef] [Google Scholar]
  6. Zhang W, Yu R, Zhang H J, et al. First-principles studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3[J]. New Journal of Physics, 2010, 12(6): 065013. [CrossRef] [Google Scholar]
  7. Chang C Z, Zhang J, Feng X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator[J]. Science, 2013, 340(6129): 167–170. [CrossRef] [Google Scholar]
  8. Wang S, Lin B C, Wang A Q, et al. Quantum transport in Dirac and Weyl semimetals: a review[J]. Advances in Physics: X, 2017, 2(3): 518–544. [CrossRef] [Google Scholar]
  9. Ma J C, Deng K, Zheng L, et al. Experimental progress on layered topological semimetals. 2D Mater[J]. 2019. [Google Scholar]
  10. Wu H, Nance J, Razavi S A, et al. Chiral Symmetry Breaking for Deterministic Switching of Perpendicular Magnetization by Spin–Orbit Torque[J]. Nano letters, 2020, 21(1): 515–521. [Google Scholar]
  11. Asbóth J K. Symmetries, topological phases, and bound states in the one-dimensional quantum walk[J]. Physical Review B, 2012, 86(19): 195414. [CrossRef] [Google Scholar]
  12. Zhou L. Dynamical characterization of non-Hermitian Floquet topological phases in one dimension[J]. Physical Review B, 2019, 100(18): 184314. [Google Scholar]
  13. Zhou L, Gong J. Non-Hermitian Floquet topological phases with arbitrarily many real-quasienergy edge states[J]. Physical Review B, 2018, 98(20): 205417. [CrossRef] [Google Scholar]
  14. Zhou L, Gong J. Floquet topological phases in a spin-1/2 double kicked rotor[J]. Physical Review A, 2018, 97(6): 063603. [CrossRef] [Google Scholar]
  15. Zhou L, Pan J. Non-Hermitian Floquet topological phases in the double-kicked rotor[J]. Physical Review A, 2019, 100(5): 053608. [CrossRef] [MathSciNet] [Google Scholar]
  16. Asbóth J K. Symmetries, topological phases, and bound states in the one-dimensional quantum walk[J]. Physical Review B, 2012, 86(19): 195414. [CrossRef] [Google Scholar]
  17. Wang C, Wang X R, Guo C X, et al. Defective edge states and anomalous bulk-boundary correspondence for topological insulators under non-Hermitian similarity transformation[J]. International Journal of Modern Physics B, 2020, 34(09): 2050146. [CrossRef] [MathSciNet] [Google Scholar]
  18. Asbóth J K, Obuse H. Bulk-boundary correspondence for chiral symmetric quantum walks[J]. Physical review b, 2013, 88(12): 121406. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.