Open Access
Issue
ITM Web Conf.
Volume 48, 2022
The 4th International Conference on Computing and Wireless Communication Systems (ICCWCS 2022)
Article Number 03004
Number of page(s) 6
Section Computer Science, Intelligent Systems and Information Technologies
DOI https://doi.org/10.1051/itmconf/20224803004
Published online 02 September 2022
  1. O. Lachhab, Reconnaissance Statistique de la Parole Continue pour Voix Laryngée et Alaryngée, tel.archives-ouvertes.fr, (2017) https://tel.archives-ouvertes.fr/tel-01563766/ [Google Scholar]
  2. I. Ben Othmane, Conversion de la voix: Approches et applications, tel.archives-ouvertes.fr, (2019). https://tel.archives-ouvertes.fr/tel-02276259. [Google Scholar]
  3. F. Bahja, Détection du fondamental de la parole en temps réel: application aux voix pathologiques, tel.archives-ouvertes.fr, (2013). https://tel.archives-ouvertes.fr/tel-00927147 [Google Scholar]
  4. C. Manfredi, M. D'aniello, and P. Bruscaglioni, Comparison between AR and SVD approaches for speech denoising, (2001). [Google Scholar]
  5. C. Manfredi, L. Landini, F. Faita, and V. Gemignani, SVD-based portable device for real-time hoarse voice denoising, IEEE Xplore, (Jul. 01, 2002) [Google Scholar]
  6. Y. Zhang, J. J. Jiang, and F. A. Feroze, Wavelet-based denoising for improving nonlinear dynamic analysis of pathological voices, ur.booksc.eu, (2005) [Google Scholar]
  7. M. Shafieian and M. Rahmanian, An unsupervised approach for improving speech enhancement using wavelet packet transform and adaptive thresholding, Bdigital2.ula.ve, 26, no. 3, (2019), doi: pp 92.0200. [Google Scholar]
  8. S.-J. Lee and H.-Y. Kwon, A Preprocessing Strategy for Denoising of Speech Data Based on Speech Segment Detection, Applied Sciences, 10, no. 20, p. 7385, (2020), doi: 10.3390/app10207385. [CrossRef] [Google Scholar]
  9. D. W. Griffin and J. S. Lim, Signal estimation from modified short-time Fourier transform, IEEE Transactions on Acoustics, Speech, and Signal Processing, 32, no. 2, pp. 236–243, (1984), doi: 10.1109/TASSP.1984.1164317. [CrossRef] [Google Scholar]
  10. Z. Khawaja, Analyse des états de surface en science des matériaux: caractérisation multi-échelles par ondelette et détermination de l’anisotropie des surfaces, HAL Archives Ouvertes, (2014). https://hal.archives-ouvertes.fr/tel-01081204/ [Google Scholar]
  11. A. Lallouani, Débruitage d’un signal de la parole corrompu par un bruit coloré en utilisant la transformée en ondelettes et implantation sur un processeur de traitement numérique des signaux, espace.etsmtl.ca, (2004). [Google Scholar]
  12. I. W. Selesnick, R. G. Baraniuk, and N. C. Kingsbury, The dual-tree complex wavelet transform, IEEE Signal Processing Magazine, 22, no. 6, pp. 123–151, (2005), doi: 10.1109/msp.2005.1550194. [CrossRef] [Google Scholar]
  13. P. Loiseau, Ondelettes complexes pour l’analyse des lois d’échelles, (2006). [Google Scholar]
  14. K. Nabgha, M. Khannoussi, and A. Tazi, Bruit et filtrage, dspace.univ-adrar.edu.dz, (2018). [Google Scholar]
  15. A. Jeanvoine, Intérêt des algorithmes de réduction de bruit dans l’implant cochléaire : Application à la binauralité, tel.archives-ouvertes.fr, (2012). [Google Scholar]
  16. J. Balado, P. van Oosterom, L. Díaz-Vilariño, and M. Meijers, Mathematical morphology directly applied to point cloud data, ISPRS Journal of Photogrammetry and Remote Sensing, 168, no. 168, pp. 208–220, (2020), doi: 10.1016/j.isprsjprs.2020.08.011. [CrossRef] [Google Scholar]
  17. A. Soni and A. P. Singh, Automatic Pulmonary Cancer Detection using Prewitt & Morphological Dilation, 2nd International Conference on Data, Engineering and Applications (IDEA), (Feb. 2020), doi: 10.1109/idea49133.2020.9170680. [Google Scholar]
  18. I. Ben Othmane, J. Di Martino, and K. Ouni, Enhancement of esophageal speech obtained by a voice conversion technique using time dilated Fourier cepstra, International Journal of Speech Technology, 22, no. 1, pp. 99–110, (2018), doi: 10.1007/s10772-018-09579-1. [Google Scholar]
  19. W. Verhelst, Overlap-add methods for time-scaling of speech, Speech Communication, 30, no. 4, pp. 207–221, (2000), doi: 10.1016/s0167-6393(99)00051-5. [CrossRef] [Google Scholar]
  20. M. Bahoura, Efficient FPGA-Based Architecture of the Overlap-Add Method for Short-Time Fourier Analysis/Synthesis, Electronics, 8, no. 12, p. 1533, (2019), doi: 10.3390/electronics8121533. [CrossRef] [Google Scholar]
  21. E. B. George and M. J. T. Smith, Speech analysis/synthesis and modification using an analysis-by-synthesis/overlap-add sinusoidal model, IEEE Transactions on Speech and Audio Processing, 5, no. 5, pp. 389–406, (1997), doi: 10.1109/89.622558. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.