Open Access
ITM Web Conf.
Volume 50, 2022
Fourth International Conference on Advances in Electrical and Computer Technologies 2022 (ICAECT 2022)
Article Number 01003
Number of page(s) 11
Section Recent Computer Technologies
Published online 15 December 2022
  1. N. Kasto, J. Whalley, Measuring the difficulty of code comprehension tasks using software metrics, Fifteenth Australas. Comput. Educ. Conf., 136, 7, (2013) [Google Scholar]
  2. G. A. Campbell, A new way of measuring understandability, 21, (2002) [Google Scholar]
  3. S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vasquez, D. Poshyvanyk, R. Oliveto, Automatically Assessing Code Understandability, IEEE Trans. Softw. Eng., 47, no. 3, 595–613, (Mar. 2021), doi: 10.1109/TSE.2019.2901468 [CrossRef] [Google Scholar]
  4. M. M. Barón, M. Wyrich, S. Wagner, An Empirical Validation of Cognitive Complexity as a Measure of Source Code Understandability, in Proceedings of the 14th ACM IEEE Int. Symp. Empir. Softw. Eng. Meas. ESEM, 1–12, (Oct. 2020), doi: 10.1145/3382494.3410636 [Google Scholar]
  5. A. K. Misra, Evaluating cognitive complexity measure with Weyuker properties, in Proceedings of the Third IEEE International Conference on Cognitive Informatics, pp. 103–108, (2004), doi: 10.1109/COGINF.2004.1327464 [Google Scholar]
  6. S. Misra, A. Adewumi, L. Fernandez-Sanz, R. Damasevicius, A Suite of Object Oriented Cognitive Complexity Metrics, IEEE Access, 6, 8782–8796, (2018), doi: 10.1109/ACCESS.2018.2791344 [Google Scholar]
  7. A. Aloysius, L. Arockiam, A Survey on Metric of Software Cognitive Complexity for OO design, 5, 10, 5, (2011) [Google Scholar]
  8. Jingqiu Shao, Yingxu Wang, A new measure of software complexity based on cognitive weights, Can. J. Electr. Comput. Eng., 28, 2, 69–74, (Apr. 2003), doi: 10.1109/CJECE.2003.1532511 [CrossRef] [Google Scholar]
  9. S. Misra, Cognitive Program Complexity Measure, in Proceedings of the 6th IEEE International Conference on Cognitive Informatics, 120–125, (Aug. 2007), doi: 10.1109/COGINF.2007.4341881 [Google Scholar]
  10. A. K. Jakhar, K. Rajnish, A New Cognitive Approach to Measure the Complexity of Software, Int. J. Softw. Eng. Its Appl., 8, 185–198, (Jul. 2014) [Google Scholar]
  11. D. S. Kushwaha, A. K. Misra, Robustness analysis of cognitive information complexity measure using Weyuker properties, ACM SIGSOFT Softw. Eng. Notes, 31, 1, 1–6, (Jan. 2006), doi: 10.1145/1108768.1108775 [Google Scholar]
  12. S. Misra, Modified Cognitive Complexity Measure, Computer and Information Sciences – ISCIS 2006, 4263, 1050–1059, A. Levi, E. Savaş, H. Yenigün, S. Balcısoy, and Y. Saygın, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, (2006), doi: 10.1007/11902140_109 [Google Scholar]
  13. Y. Wang, V. Chiew, Empirical Studies on the Functional Complexity of Software in Large-Scale Software Systems, 20, (2011) [Google Scholar]
  14. J. K. Chhabra, Code Cognitive Complexity: A New Measure, in Proceedings of the World Congr. Eng. 2011, 3, 5, (2011) [Google Scholar]
  15. S. Misra, I. Akman, M. Koyuncu, An inheritance complexity metric for object-oriented code: A cognitive approach, Sadhana, 36, 3, 317–337, (Jun. 2011), doi: 10.1007/s12046-011-0028-2 [Google Scholar]
  16. S. Misra, F. Cafer, Estimating complexity of programs in Python language, Teh. Vjesn., 18, 1, 23–32, (2011) [Google Scholar]
  17. S. Misra, M. Koyuncu, M. Crasso, C. Mateos, A. Zunino, A Suite of Cognitive Complexity Metrics, Computational Science and Its Applications – ICCSA 2012, 7336, 234–247, B. Murgante, O. Gervasi, S. Misra, N. Nedjah, A. M. A. C. Rocha, D. Taniar, and B. O. Apduhan, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, (2012), doi: 10.1007/978-3-642-31128-4_17 [Google Scholar]
  18. A. Aloysius, L. Arockiam, Coupling Complexity Metric: A Cognitive Approach, Int. J. Inf. Technol. Comput. Sci., 4, 9, 29–35, (Aug. 2012), doi: 10.5815/ijitcs.2012.09.04 [Google Scholar]
  19. M. Crasso, C. Mateos, A. Zunino, S. Misra, P. Polvor´ın, ASSESSING COGNITIVE COMPLEXITY IN JAVA-BASED OBJECT-ORIENTED SYSTEMS: METRICS AND TOOL SUPPORT, Comput. Inform., 35, 497–527, (2016) [Google Scholar]
  20. U. Chhillar, S. Bhasin, A New Weighted Composite Complexity Measure for ObjectOriented Systems, Int. J. Inf. Commun. Technol. Res., 1, 3, 8, (2011) [Google Scholar]
  21. R. Saborido, J. Ferrer, F. Chicano, E. Alba, Automatizing Software Cognitive Complexity Reduction, IEEE Access, 10, 11642–11656, (2022), doi: 10.1109/ACCESS.2022.3144743 [CrossRef] [Google Scholar]
  22. A. Madi, O. K. Zein, S. Kadry, On the Improvement of Cyclomatic Complexity Metric, Int. J. Softw. Eng. Its Appl., 7, 2, 67–82, (2013) [Google Scholar]
  23. R. D. Banker, S. M. Datar, D. Zweig, Software complexity and maintainability, in Proceedings of the tenth international conference on Information Systems ICIS ’89, Boston, Massachusetts, United States, 247–255, (1989), doi: 10.1145/75034.75056. [Google Scholar]
  24. F. Détienne, Software Design — Cognitive Aspects. London: Springer London, (2002), doi: 10.1007/978-1-4471-0111-6 [Google Scholar]
  25. P. G. Armour, Beware of counting LOC, Commun. ACM, 47, 3, 21–24, (Mar. 2004), doi: 10.1145/971617.971635 [CrossRef] [Google Scholar]
  26. A. J. Bishara, J. B. Hittner, Testing the significance of a correlation with nonnormal data: Comparison of Pearson, Spearman, transformation, and resampling approaches., Psychol. Methods, 17, 3, 399–417, (Sep. 2012), doi: 10.1037/a0028087 [Google Scholar]
  27. M. Chavent, Y. Lechevallier, O. Briant, DIVCLUS-T: A monothetic divisive hierarchical clustering method, Comput. Stat. Data Anal., 52, 2, 687–701, (Oct. 2007), doi: 10.1016/j.csda.2007.03.013 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.