Open Access
Issue
ITM Web Conf.
Volume 50, 2022
Fourth International Conference on Advances in Electrical and Computer Technologies 2022 (ICAECT 2022)
Article Number 01004
Number of page(s) 8
Section Recent Computer Technologies
DOI https://doi.org/10.1051/itmconf/20225001004
Published online 15 December 2022
  1. Bo, Y., Feng, L., & Xiaoyu, Z., Cloud computing task scheduling algorithm based on dynamic priority, (2022). [Google Scholar]
  2. Li, F., Liao, T. W., & Cai, W., Research on the collaboration of service selection and resource scheduling for IoT simulation workflows, (2022). [Google Scholar]
  3. Sodinapalli, N. P., Kulkarni, S., Sharief, N. A., & Venkatareddy, P., An efficient resource utilization technique for scheduling scientific workload in cloud computing environment, (2022). [Google Scholar]
  4. Gao, M., Li, Y., & Yu, J., Workload Prediction of Cloud Workflow Based on Graph Neural Network, (2021). [Google Scholar]
  5. Kaur, G., & Bala, A., Prediction based task scheduling approach for floodplain application in cloud environment, (2021). [Google Scholar]
  6. Khallouli, W., & Huang, J., Cluster resource scheduling in cloud computing: literature review and research challenges, (2021). [Google Scholar]
  7. Patil, S. S., & Brahmananda, S. H., Latency Aware Resource Scheduling and Queuing, (2021). [Google Scholar]
  8. Rajput, R. K. S., Hussain, R., & Goyal, D., Modelling and Simulation of Cloud Service Cost Analysis using Resource Scheduling, (2021). [Google Scholar]
  9. Yuejuan, K., Zhuojun, L., & Weihao, O., Task Scheduling Algorithm Based on Reliability Perception in Cloud Computing, (2021). [Google Scholar]
  10. Zhang, B., Zeng, Z., Shi, X., Yang, J., Veeravalli, B., & Li, K.: A novel cooperative resource provisioning strategy for Multi-Cloud load balancing, (2021). [Google Scholar]
  11. Rupali, & Mangla, N., Resource Scheduling on Basis of Cost-Effectiveness in Cloud Computing Environment, (2020). [Google Scholar]
  12. V, A., & Bhalaji, N., Load balancing in cloud computing using water wave algorithm, (2019). [Google Scholar]
  13. Madni, S. H. H., Abd Latiff, M. S., Abdullahi, M., Abdulhamid, S. M., & Usman, M. J., Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment, (2017). [Google Scholar]
  14. Muhammad Akhtar, Bushra Hamid, Inayat Ur-Rehman, Mamoona Humayun, Maryam Hamayun, Hira Khurshid., An Optimized Shortest job first Scheduling Algorithm for CPU Scheduling, (2015). [Google Scholar]
  15. Domanal, S. G., & Reddy, G. R. M., Optimal load balancing in cloud computing by efficient utilization of virtual machines, (2014). [Google Scholar]
  16. Chen, W., & Deelman, E.: WorkflowSim, A toolkit for simulating scientific workflows in distributed environments, (2012). [Google Scholar]
  17. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., & Zaharia, M., A view of cloud computing, (2010). [Google Scholar]
  18. Dillon, T., Wu, C., & Chang, E., Cloud Computing: Issues and Challenges, (2010). [Google Scholar]
  19. Vengerov, D., A reinforcement learning approach to dynamic resource allocation, (2007). [Google Scholar]
  20. Andrew, Alex., Reinforcement Learning, Kybernetes, (1998). [Google Scholar]
  21. Richard S. Sutton, Andrew G. Barto., Reinforcement Learning An introduction, (1998). [Google Scholar]
  22. Uwe Schwiegelshohn, Ramin Yahyapour., Analysis of First-Come-First-Serve Parallel Job Scheduling, (1998). [Google Scholar]
  23. Kaelbling L.P., Littman M.L., Moore A.W., Reinforcement learning: A survey, (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.