Open Access
ITM Web Conf.
Volume 50, 2022
Fourth International Conference on Advances in Electrical and Computer Technologies 2022 (ICAECT 2022)
Article Number 01005
Number of page(s) 16
Section Recent Computer Technologies
Published online 15 December 2022
  1. Yazdavar, A. H., Mahdavinejad, M. S., Bajaj, G., Romine, W., Sheth, A., Monadjemi, A. H., Thirunarayan, K., Meddar, J. M., Myers, A., Pathak, J., & Hitzler, P. (2020). Multimodal mental health analysis in social media. PloS one, 15(4), e0226248. [CrossRef] [Google Scholar]
  2. Babu NV, Kanaga EGM. Sentiment Analysis in Social Media Data for Depression Detection Using Artificial Intelligence: A Review. SN Comput Sci. 2022;3(1):74. doi: 10.1007/s42979-021-00958-1. Epub 2021 Nov 19. PMID: 34816124; PMCID: PMC8603338. [CrossRef] [Google Scholar]
  3. Uban, Ana Sabina et al. “An emotion and cognitive based analysis of mental health disorders from social media data.” Future Gener. Comput. Syst. 124 (2021): 480-494. [CrossRef] [Google Scholar]
  4. AlSagri, Hatoon S. and Mourad Ykhlef. “Machine Learning-based Approach for Depression Detection in Twitter Using Content and Activity Features.” ArXiv abs/2003.04763 (2020): n. pag. [Google Scholar]
  5. Fu, Guanghui et al. “Distant Supervision for Mental Health Management in Social Media: Suicide Risk Classification System Development Study.” Journal of medical Internet research vol. 23, 8 e26119. 26 Aug. 2021, doi: 10.2196/26119 [CrossRef] [Google Scholar]
  6. Chenhao Lin, Pengwei Hu, Hui Su, Shaochun Li, Jing Mei, Jie Zhou, and Henry Leung. 2020. SenseMood: Depression Detection on Social Media. Proceedings of the 2020 International Conference on Multimedia Retrieval. Association for Computing Machinery, New York, NY, USA, 407–411. DOI: [Google Scholar]
  7. Kawade, Dipak & Oza, Kavita. (2017). Sentiment Analysis: Machine Learning Approach. International Journal of Engineering and Technology. 9. 2183-2186. 10.21817/ijet/2017/v9i3/1709030151. [CrossRef] [Google Scholar]
  8. Raza, Hassan & Faizan, M. & Hamza, Ahsan & Mushtaq, Ahmed & Akhtar, Naeem. (2019). Scientific Text Sentiment Analysis using Machine Learning Techniques. International Journal of Advanced Computer Science and Applications. 10.10.14569/IJACSA.2019.0101222. [Google Scholar]
  9. Nirag T. BhattAsst. Prof., Saket J. Swarndeep (2020). Sentiment Analysis using Machine Learning Technique: A Literature Survey. IJERT. [Google Scholar]
  10. Mitra, Ayushi. (2020). Sentiment Analysis Using Machine Learning Approaches (Lexicon based on movie review dataset). Journal of Ubiquitous Computing and Communication Technologies. 2. 145-152. 10.36548/jucct.2020.3.004. [CrossRef] [Google Scholar]
  11. Islam MR, Kabir MA, Ahmed A, Kamal ARM, Wang H, Ulhaq A. Depression detection from social network data using machine learning techniques. Health Inf Sci Syst. 2018;6(1):8. Published 2018 Aug 27. doi: 10.1007/s13755-018-0046-0 [CrossRef] [Google Scholar]
  12. Kharde, Vishal & Sonawane, Sheetal. (2016). Sentiment Analysis of Twitter Data: A Survey of Techniques. International Journal of Computer Applications. 139. 5-15. 10.5120/ijca2016908625. [CrossRef] [Google Scholar]
  13. Asad, Nafiz & Md.Pranto, Appel Mahmud & Afreen, Sadia & Md.Islam, Maynul. (2019). Depression Detection by Analyzing Social Media Posts of User. 13-17 10.1109/SPICSCON48833.2019.9065101. [Google Scholar]
  14. G. Geetha, G. Saranya, K. Chakrapani, J. G. Ponsam, M. Safa and S. Karpagaselvi, “Early Detection Of Depression from Social Media Data Using Machine Learning Algorithms, ” 2020 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), 2020, pp. 1-6, doi: 10.1109/ICPECTS49113.2020.9336974. [Google Scholar]
  15. K. A. Govindasamy and N. Palanichamy, “Depression Detection Using Machine Learning Techniques on Twitter Data, ” 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), 2021, pp. 960966, doi: 10.1109/ICICCS51141.2021.9432203. [Google Scholar]
  16. Chatterjee, Rinki & Gupta, Rajeev & Gupta, Bhavana. (2021). Depression Detection from Social Media Posts Using Multinomial Naive Theorem. IOP Conference Series: Materials Science and Engineering. 1022. 012095. 10.1088/1757-899X/1022/1/012095. [CrossRef] [Google Scholar]
  17. Cacheda, F., Fernandez, D., Novoa, F. J., & Carneiro, V. (2019). Early Detection of Depression: Social Network Analysis and Random Forest Techniques. Journal of medical Internet research, 21(6), e12554. [CrossRef] [Google Scholar]
  18. Chiong, Raymond & Budhi, Gregorius & Dhakal, Sandeep & Chiong, Fabian. (2021). A textual-based featuring approach for depression detection using machine learning classifiers and social media texts. Computers in Biology and Medicine. 135. 104499. 10.1016/j.compbiomed.2021.104499. [CrossRef] [Google Scholar]
  19. Go, A., Bhayani, R. and Huang, L., 2009. Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, 1(2009), p.12. [Google Scholar]
  20. J. Li and Y. Liang, “Refining Word Embeddings Based on Improved Genetic Algorithm for Sentiment Analysis, ” 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 2020, pp. 213-216, doi: 10.1109/ITAIC49862.2020.9339058. [Google Scholar]
  21. H. Silva, E. Andrade, D. Araújo and J. Dantas, “Sentiment Analysis of Tweets Related to SUS Before and During COVID-19 pandemic, ” in IEEE Latin America Transactions, vol. 20, no. 1, pp. 6-13, Jan. 2022, doi: 10.1109/TLA.2022.9662168. [CrossRef] [Google Scholar]
  22. A. J. Nair, V.G and A. Vinayak, “Comparative study of Twitter Sentiment On COVID 19 Tweets, ” 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), 2021, pp. 1773-1778, doi: 10.1109/ICCMC51019.2021.9418320. [Google Scholar]
  23. M. K. Patil, N. Chaudhari, B. V. Pawar and R. Bhavsar, “Exploring various emotionshades for Marathi Sentiment Analysis, ” 2021 Asian Conference on Innovation in Technology (ASIANCON), 2021, pp. 1-5, doi: 10.1109/ASIANCON51346.2021.9544961. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.