Open Access
ITM Web Conf.
Volume 52, 2023
International Conference on Connected Object and Artificial Intelligence (COCIA’2023)
Article Number 02004
Number of page(s) 9
Section Artificial Intelligence and its Application
Published online 08 May 2023
  1. D. T. Nguyen, T. N. Nguyen, H. Kim, H.-J. Lee, A high-throughput and powerefficient FPGA implementation of YOLO CNN for object detection. IEEE Transactions on Very Large-Scale Integration (VLSI) Systems. 27, 1861–1873 (2019) [CrossRef] [Google Scholar]
  2. J. Redmon, A. Farhadi, Yolo9000: Better, faster, stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) [Google Scholar]
  3. E. Wang, PYNQ Classification-Python on Zynq FPGA for Neural Networks, Imperial College London, Final Year Project Report, (2017) [Google Scholar]
  4. Z. Zou, K. Chen, Z. Shi, Y. Guo, J. Ye, Object detection in 20 years: A survey. Proceedings of the IEEE. 111, 257–276 (2023) [CrossRef] [Google Scholar]
  5. A. Sharma, V. Singh, A. Rani, Implementation of CNN on Zynq based FPGA for realtime object detection. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (2019) [Google Scholar]
  6. S. Kalapothas, G. Flamis, P. Kitsos, Efficient edge-AI application deployment for fpgas. Information. 13, 279 (2022) [CrossRef] [Google Scholar]
  7. R. O. Hassan, H. Mostafa, Implementation of Deep Neural Networks on FPGA-CPU platform using Xilinx SDSOC. Analog Integrated Circuits and Signal Processing. 106, 399–408 (2020). [Google Scholar]
  8. D. T. Nguyen, H. Kim, H.-J. Lee, Layer-specific optimization for mixed data flow with mixed precision in FPGA design for CNN-based Object Detectors. IEEE Transactions on Circuits and Systems for Video Technology. 31, 2450–2464 (2021) [CrossRef] [Google Scholar]
  9. G. Dinelli, G. Meoni, E. Rapuano, L. Fanucci, Advantages and limitations of fully onchip CNN FPGA-based hardware accelerator. 2020 IEEE International Symposium on Circuits and Systems (ISCAS) (2020) [Google Scholar]
  10. W. Lin, L. Zhang, Design of convolutional neural network SOC system based on FPGA. 2020 International Conference on Communications, Information System and Computer Engineering (CISCE) (2020) [Google Scholar]
  11. Z. Wang, K. Xu, S. Wu, L. Liu, L. Liu, D. Wang, Sparse-YOLO: Hardware/software co-design of an FPGA accelerator for yolov2. IEEE Access. 8, 116569–116585 (2020) [CrossRef] [Google Scholar]
  12. A. Ahmad, M. A. Pasha, G. J. Raza, Accelerating tiny yolov3 using FPGA-based hardware/software co-design. 2020 IEEE International Symposium on Circuits and Systems (ISCAS) (2020) [Google Scholar]
  13. J. Redmon, A. Farhadi, Yolov3: An incremental improvement, In: Computer vision and pattern recognition, Berlin/Heidelberg, Germany 2018, (2018) [Google Scholar]
  14. C. Ding, S. Wang, N. Liu, K. Xu, Y. Wang, Y. Liang, Req-yolo. Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (2019) [Google Scholar]
  15. S. Bouguezzi, H. B. Fredj, T. Belabed, C. Valderrama, H. Faiedh, C. Souani, An efficient FPGA-based convolutional neural network for classification: AD-mobilenet. Electronics. 10, 2272 (2021) [CrossRef] [Google Scholar]
  16. S. Li, Y. Luo, K. Sun, N. Yadav, and K. K. Choi, A novel FPGA accelerator design for real-time and ultra-low power deep convolutional neural networks compared with Titan X GPU. IEEE Access. 8, 105455–105471 (2020) [CrossRef] [Google Scholar]
  17. K. Xu, X. Wang, X. Liu, C. Cao, H. Li, H. Peng, and D. Wang, A dedicated hardware accelerator for real-time acceleration of yolov2. Journal of Real-Time Image Processing. 18, 481–492 (2020) [Google Scholar]
  18. Z. Zhang, M. A. Mahmud, A. Z. Kouzani, Resource-constrained FPGA implementation of yolov2. Neural Computing and Applications. 34, 16989–17006 (2022) [CrossRef] [Google Scholar]
  19. H. Sharma, J. Park, E. Amaro, B. Thwaites, P. Kotha, A. Gupta, K. Kim Joon, A. Mishra, H. Esmaeilzadeh, Dnnweaver: From high-level deep network models to fpga acceleration, In: The Workshop on Cognitive Architectures, 2016, (2016) [Google Scholar]
  20. F. Fahim, B. Hawks, C. Herwig, J. Hirschauer, S. Jindariani, N. Tran, L.P. Carloni, G. Di Guglielmo, P. Harris, J. Krupa, D. Rankin, hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices, arXiv preprint arXiv:2103.05579, (2021) [Google Scholar]
  21. S. I. Venieris, C.-S. Bouganis, FpgaConvNet: Mapping regular and irregular convolutional neural networks on fpgas. IEEE Transactions on Neural Networks and Learning Systems. 30, 326–342 (2019) [CrossRef] [Google Scholar]
  22. Y. Wang, J. Xu, Y. Han, H. Li, X. Li, Deepburning. Proceedings of the 53rd Annual Design Automation Conference (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.