Open Access
ITM Web Conf.
Volume 52, 2023
International Conference on Connected Object and Artificial Intelligence (COCIA’2023)
Article Number 04004
Number of page(s) 7
Section Electrical Engineering
Published online 08 May 2023
  1. Karaboga, D., Kaya, E. Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artif Intell Rev 52, 2263–2293 (2019). [CrossRef] [Google Scholar]
  2. H. Asada & J.J. Slotine, “Robot analysis and Control”, New york:Wiley, 1986. [Google Scholar]
  3. Anh-Tu Nguyen; Tadanari Taniguchi et all, ’Fuzzy Control Systems: Past, Present and Future’, IEEE Computational Intelligence Magazine ( Volume: 14, Issue: 1, February 2019) [Google Scholar]
  4. P. Sumathi, “Precise tracking control of robot manipulator using fuzzy logic”, DARH2005 conference, session4.1. [Google Scholar]
  5. Mohammed Salah Abood; Isam Kareem Thajeel et all, Fuzzy Logic Controller to control the position of a mobile robot that follows a track on the floor, 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). [Google Scholar]
  6. M. Kevin, Passino and Stephan Yurkovich, “Fuzzy logic”, Addison Wesley longman 1998. [Google Scholar]
  7. Jang J. S. R. “Adaptive network based fuzzy inference systems”, IEEE Transactions on systems man and cybernetics 1993, p. 665-685. [CrossRef] [Google Scholar]
  8. B. Allaoua, A. Laoufi, B. Gasbaoui, and A. Aabderrahmani, “Neuro-Fuzzy DC Motor Speed Control Using Particle Swarm Optimization”, Leonardo Electronic Journal of Practices and Technologies Issue 15, July-December 2009 [Google Scholar]
  9. F. Baghli, L. El bakkali, “Artificial Intelligence Application’s for a Robot Manipulator with Two Degrees of Freedom Position Control” International Journal of Mechatronics, Electrical and Computer Technology Vol. 4(11), Apr. 2014, pp. 349-368. [Google Scholar]
  10. Lin C. T., Lee C. S. G. Neural fuzzy systems: A neuro-fuzzy synergism to intelligent systems. Upper Saddle River, Prentice-Hall, 1996. Constantin V. A. Fuzzy logic and neuro-fuzzy applications explained. Englewood Cliffs, Prentice-Hall, 1995. [Google Scholar]
  11. F. Z. Baghli, L. El Bakkali, Y. Lakhal, A. Nasri, and B. Gasbaoui, “Arm Manipulator Position Control Based On Multi-Input Multi-output PID Strategy”. Journal of Automation, Mobile Robotics and Intelligent Systems 8 (2):36-39 (2014). [CrossRef] [Google Scholar]
  12. Kim J., Kasabov N. Hy FIS, Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems. Neural Networks, 1999. [Google Scholar]
  13. F. Z. Baghli, L. El Bakkali, Y. Lakhal, A. Nasri, and B. Gasbaoui, “The efficiency of the inference system knowledge strategy for the position control of a robot manipulator with two degree of freedom”, International Journal of Research in Engineering and Technology, Volume: 02 Issue: 07 Jul [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.