Open Access
Issue
ITM Web Conf.
Volume 53, 2023
2nd International Conference on Data Science and Intelligent Applications (ICDSIA-2023)
Article Number 02005
Number of page(s) 16
Section Machine Learning / Deep Learning
DOI https://doi.org/10.1051/itmconf/20235302005
Published online 01 June 2023
  1. Cao, C., Wang, B., Zhang, W., Zeng, X., Yan, X., Feng, Z., ... & Wu, Z. (2019). An improved faster R-CNN for small object detection. Ieee Access, 7, 106838-106846. [CrossRef] [Google Scholar]
  2. Casalegno, F., Newton, T., Daher, R., Abdelaziz, M., Lodi-Rizzini, A., Schürmann, F., ... & Markram, H. (2019). Caries detection with near-infrared transillumination using deep learning. Journal of dental research, 98(11), 1227-1233. [CrossRef] [Google Scholar]
  3. Datta, S., & Chaki, N. (2015, November). Detection of dental caries lesion at early stage based on image analysis technique. In 2015 IEEE International Conference on Computer Graphics, Vision and Information Security (CGVIS) (pp. 89-93). IEEE. [Google Scholar]
  4. Eggert, C., Brehm, S., Winschel, A., Zecha, D., & Lienhart, R. (2017, July). A closer look: Small object detection in faster R-CNN. In 2017 IEEE international conference on multimedia and expo (ICME) (pp. 421-426).IEEE. [Google Scholar]
  5. Gavrilescu, R., Zet, C., Foşalău, C., Skoczylas, M., & Cotovanu, D. (2018, October). Faster R-CNN: an approach to real-time object detection. In 2018 International Conference and Exposition on Electrical And Power Engineering (EPE) (pp. 0165-0168). IEEE. [Google Scholar]
  6. Huang, R., Pedoeem, J., & Chen, C. (2018, December). YOLO-LITE: a real-time object detection algorithm optimized for non-GPU computers. In 2018 IEEE International Conference on Big Data (Big Data) (pp. 2503-2510). IEEE. [Google Scholar]
  7. Kanimozhi, S., Gayathri, G., & Mala, T. (2019, February). Multiple Real-time object identification using Single shot Multi-Box detection. In 2019 International Conference on Computational Intelligence in Data Science (ICCIDS) (pp. 1-5). IEEE. [Google Scholar]
  8. Kühnisch, J., Meyer, O., Hesenius, M., Hickel, R., & Gruhn, V. (2022). Caries detection on intraoral images using artificial intelligence. Journal of dental research, 101(2), 158165.4 [Google Scholar]
  9. Lee, J. H., Kim, D. H., Jeong, S. N., & Choi, S. H. (2018). Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of dentistry, 77, 106-111. [CrossRef] [Google Scholar]
  10. Lian, L., Zhu, T., Zhu, F., & Zhu, H. (2021). Deep learning for caries detection and classification. Diagnostics, 11(9), 1672. [CrossRef] [Google Scholar]
  11. Liu, B., Zhao, W., & Sun, Q. (2017, October). Study of object detection based on Faster R-CNN. In 2017 Chinese Automation Congress (CAC) (pp. 6233-6236). IEEE. [Google Scholar]
  12. Liu, C., Tao, Y., Liang, J., Li, K., & Chen, Y. (2018, December). Object detection based on YOLO network. In 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC) (pp. 799-803). IEEE. [Google Scholar]
  13. Mariano, V. Y., Min, J., Park, J. H., Kasturi, R., Mihalcik, D., Li, H., ... & Drayer, T. (2002, August). Performance evaluation of object detection algorithms. In 2002 International Conference on Pattern Recognition (Vol. 3, pp. 965-969). IEEE. [Google Scholar]
  14. Minaee, S., Boykov, Y. Y., Porikli, F., Plaza, A. J., Kehtarnavaz, N., & Terzopoulos, D. (2021). Image segmentation using deep learning: A survey. IEEE transactions on pattern analysis and machine intelligence [Google Scholar]
  15. Patil, S., Kulkarni, V., & Bhise, A. (2019). Algorithmic analysis for dental caries detection using an adaptive neural network architecture. Heliyon, 5(5), e01579. [CrossRef] [PubMed] [Google Scholar]
  16. Shafiee, M. J., Chywl, B., Li, F., & Wong, A. (2017). Fast YOLO: A fast you only look once system for real-time embedded object detection in video. arXiv preprint arXiv:1709.05943. [Google Scholar]
  17. Srivastava, M. M., Kumar, P., Pradhan, L., & Varadarajan, S. (2017). Detection of tooth caries in bitewing radiographs using deep learning. arXiv preprint arXiv:1711.07312. [Google Scholar]
  18. Thai, L. H., Hai, T. S., & Thuy, N. T. (2012). Image classification using support vector machine and artificial neural network. International Journal of Information Technology and Computer Science, 4(5), 32-38. [CrossRef] [Google Scholar]
  19. Thanh, M. T. G., Van Toan, N., Ngoc, V. T. N., Tra, N. T., Giap, C. N., & Nguyen, D. M. (2022). Deep Learning Application in Dental Caries Detection Using Intraoral Photos Taken by Smartphones. Applied Sciences, 12(11), 5504 [CrossRef] [Google Scholar]
  20. Zhang, H., Chang, H., Ma, B., Shan, S., & Chen, X. (2019). Cascade retinanet: Maintaining consistency for single-stage object detection. arXiv preprint arXiv:1907.06881. [Google Scholar]
  21. Zhao, L., & Li, S. (2020). Object detection algorithm based on improved YOLOv3. Electronics, 9(3), 537. [CrossRef] [Google Scholar]
  22. Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object detection with deep learning: A review. IEEE transactions on neural networks and learning systems, 30(11), 3212-3232. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.