Open Access
Issue |
ITM Web Conf.
Volume 53, 2023
2nd International Conference on Data Science and Intelligent Applications (ICDSIA-2023)
|
|
---|---|---|
Article Number | 03004 | |
Number of page(s) | 11 | |
Section | Ethics, Privacy and Trust, Computer Network, Big Data Systems | |
DOI | https://doi.org/10.1051/itmconf/20235303004 | |
Published online | 01 June 2023 |
- L. Sweeney, “Achieving K-anonymity privacy protection using generalization and suppression, ” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10, p. 571–588, 2002. [CrossRef] [MathSciNet] [Google Scholar]
- L. Sweeney, “k-anonymity: A model for protecting privacy, ” International journal of uncertainty, fuzziness and knowledge-based systems, vol. 10, p. 557–570, 2002. [CrossRef] [MathSciNet] [Google Scholar]
- N. Li, T. Li, and S. Venkatasubramanian, “T-closeness: Privacy beyond k-anonymity and l-diversity, ” in 2007 IEEE 23rd international conference on data engineering, 2006. [Google Scholar]
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio, “Generative adversarial networks, ” Communications of the ACM, vol. 63, p. 139–144, 2020. [CrossRef] [Google Scholar]
- Y. Yang, Q. J. Wu and Y. Wang, “Autoencoder with invertible functions for dimension reduction and image reconstruction, ” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, p. 1065–1079, 2016. [Google Scholar]
- D. P. Kingma, M. Welling and others, “An introduction to variational autoencoders, ” Foundations and Trends® in Machine Learning, vol. 12, p. 307–392, 2019. [CrossRef] [Google Scholar]
- F. Pérez-Cruz, “Kullback-Leibler divergence estimation of continuous distributions, ” in 2008 IEEE international symposium on information theory, 2008. [Google Scholar]
- I. Goodfellow, “NIPS 2016 tutorial: Generative adversarial networks, ” arXiv preprint arXiv:1701.00160, 2016. [Google Scholar]
- H. K. Khanuja and A. A. Agarkar, “Towards GAN Challenges and Its Optimal Solutions, ” Generative Adversarial Networks and Deep Learning: Theory and Applications, 2023. [Google Scholar]
- M. a. P. J. a. P. L. a. P. M. Menendez, “The Jensen-Shannon divergence, ” Journal of the Franklin Institute, vol. 334, pp. 307-318, 1997. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Sun, L. Ma, S. J. Oh, L. Van Gool, B. Schiele and M. Fritz, “Natural and effective obfuscation by head inpainting, ” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. [Google Scholar]
- H. Hukkelås, F. Lindseth and R. Mester, “Image inpainting with learnable feature imputation, ” in DAGM German Conference on Pattern Recognition, 2020. [Google Scholar]
- R. a. S. L. a. D. l. T. F. a. B. S. Gross, “Model-based face de-identification, ” in 2006 Conference on computer vision and pattern recognition workshop (CVPRW’06), 2006. [Google Scholar]
- A. Radford, L. Metz and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks, ” arXiv preprint arXiv:1511.06434, 2015. [Google Scholar]
- H. Hukkelås, R. Mester and F. Lindseth, “Deepprivacy: A generative adversarial network for face anonymization, ” in International Symposium on visual computing, 2019. [Google Scholar]
- M. Arjovsky, S. Chintala and L. Bottou, “Wasserstein generative adversarial networks, ” in International conference on machine learning, 2017. [Google Scholar]
- K. Zhang, “On mode collapse in generative adversarial networks, ” in Artificial Neural Networks and Machine Learning–ICANN 2021: 30th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 14–17, 2021, Proceedings, Part II 30, 2021. [Google Scholar]
- Z. Ding, S. Jiang, and J. Zhao, “Take a close look at mode collapse and vanishing gradient in GAN, ” in 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI), 2022. [Google Scholar]
- M. Al-Rubaie and J. M. Chang, “Privacy-Preserving Machine Learning: Threats and Solutions, ” IEEE Security & Privacy, vol. 17, pp. 49-58, 2019. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.