Open Access
ITM Web Conf.
Volume 54, 2023
2nd International Conference on Advances in Computing, Communication and Security (I3CS-2023)
Article Number 01001
Number of page(s) 8
Section Computing
Published online 04 July 2023
  1. P. Kantale, S. Thakare, A review on pomegranate disease classification using machine learning and image segmentation techniques, in 2020 4th International conference on intelligent computing and control systems (ICICCS) (IEEE, 2020), pp. 455–460 [Google Scholar]
  2. M. Fawakherji, A. Youssef, D. Bloisi, A. Pretto, D. Nardi, Crop and weeds classification for precision agriculture using context-independent pixel-wise segmentation, in 2019 Third IEEE International Conference on Robotic Computing (IRC) (IEEE, 2019), pp. 146–152 [CrossRef] [Google Scholar]
  3. O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical im- age segmentation, in Medical Image Computing and Computer-Assisted Intervention- MICCAI2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 (Springer, 2015), pp. 234–241 [Google Scholar]
  4. G. Hinton, O. Vinyals, J. Dean, arXiv preprint arXiv:1503.02531 (2015) [Google Scholar]
  5. R. Zhang, L. Du, Q. Xiao, J. Liu, Comparison of backbones for semantic segmentation network, in Journal of Physics: Conference Series (IOP Publishing, 2020), Vol. 1544, p. 012196 [CrossRef] [Google Scholar]
  6. W. Gómez-Flores, W.C. de Albuquerque Pereira, Computers in Biology and Medicine 126, 104036 (2020) [CrossRef] [Google Scholar]
  7. T. Emara, H.E. Abd El Munim, H.M. Abbas, Liteseg: A novel lightweight convnetfor semantic segmentation, in 2019 Digital Image Computing: Techniques and Applications (DICTA) (IEEE, 2019), pp. 1–7 [Google Scholar]
  8. A. Romero, N. Ballas, S.E. Kahou, A. Chassang, C. Gatta, Y. Bengio, arXiv preprint arXiv:1412.6550 (2014) [Google Scholar]
  9. N. Komodakis, S. Zagoruyko, Paying more attention to attention: improving the per- formance of convolutional neural networks via attention transfer, in ICLR (2017) [Google Scholar]
  10. J. Ba, R. Caruana, Advances in neural information processing systems 27 (2014) [Google Scholar]
  11. G. Urban, K.J. Geras, S.E. Kahou, O. Aslan, S. Wang, R. Caruana, A. Mohamed, M. Philipose, M. Richardson, arXiv preprint arXiv:1603.05691 (2016) [Google Scholar]
  12. Y. Chen, N. Wang, Z. Zhang, Darkrank: Accelerating deep metric learning via cross sample similarities transfer, in Proceedings of the AAAI conference on artificial intelli- gence (2018), Vol. 32 [Google Scholar]
  13. Q. Li, S. Jin, J. Yan, Mimicking very efficient network for object detection, in Pro- ceedings of the ieee conference on computer vision and pattern recognition (2017), pp. 6356–6364 [Google Scholar]
  14. J. Xie, B. Shuai, J.F. Hu, J. Lin, W.S. Zheng, arXiv preprint arXiv:1810.08476 (2018) [Google Scholar]
  15. Y. Liu, K. Chen, C. Liu, Z. Qin, Z. Luo, J. Wang, Structured knowledge distillation for semantic segmentation, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019), pp. 2604–2613 [Google Scholar]
  16. G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in Proceedings of the IEEE conference on computer vision and pattern recognition (2017), pp. 4700–1708 [Google Scholar]
  17. M. Tan, Q. Le, Efficientnet: Rethinking model scaling for convolutional neural net- works, in International conference on machine learning (PMLR, 2019), pp. 6105–6114 [Google Scholar]
  18. C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, Inception-v4, inception-resnet and the impact ofresidual connections on learning, in Proceedings of the AAAI conference on artificial intelligence (2017), Vol. 31 [CrossRef] [Google Scholar]
  19. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.C. Chen, Mobilenetv2: Inverted residuals and linear bottlenecks, in Proceedings of the IEEE conference on computer vision and pattern recognition (2018), pp. 4510–4520 [Google Scholar]
  20. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE conference on computer vision and pattern recognition (2016), pp. 770–778 [Google Scholar]
  21. K. Simonyan, A. Zisserman, arXiv preprint arXiv:1409.1556 (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.