Open Access
Issue
ITM Web Conf.
Volume 56, 2023
First International Conference on Data Science and Advanced Computing (ICDSAC 2023)
Article Number 01003
Number of page(s) 6
Section Computational Intelligence and Computing
DOI https://doi.org/10.1051/itmconf/20235601003
Published online 09 August 2023
  1. “Mob Safe: Forensic Analysis for Android Applications and Detection of Fraud Apps,” vol. 4, no. 10, pp. 3779-3782, 2015; P. Rohini, K. Pallavi, J. Pournima, K. Kucheta, and P. P. Agarkar [Google Scholar]
  2. Prof. Omkar Dudhbure, Dewanand Kapgate, Nidhi Nikhar, Ashwini Tichkule, “Revelation of fraud applications usingsentiment analysis app reviews,” vol. 4, no. 5, 2019. [Google Scholar]
  3. Salini, Dhevadharshini, and Malath, “Detecting fraud appusing sentiment analysis,” vol. 10, no. 7, July 2021. https://ijarcce.com/papers/detecting-fraud-app-using-sentiment-analysis/ [Google Scholar]
  4. “detecting fraud applications using sentiment research,” Mandava rama rao, Nandini Kannan, and ch v s nihanth, ISSN: 2277-3878, volume 8, issue 2s3, July 2019. https://www.ijrte.org/wp- [Google Scholar]
  5. content/uploads/papers/v8i2S3/B 11070782S319.p dfValence arousal similarity-based recommendation services, IEEE international conference on Circuit, Power andComputing technologies, ICCPCT 2015. Dr. R. Subhashini and Akila, G. [Google Scholar]
  6. Mobile application for malware detection, Pranjali Deshmukh and Pankaj Agarkar, International Research Journal of Engineering and Technology (IRJET), volume: 02 issue: 02 | May 2015. http://irjet.net/archives/V2/i2/Irjet-v2i2161.pdf [Google Scholar]
  7. ‘Emerging trends in engineering & technology’ 9. Manoharbhai Patel organized the event in Shahapur, Bhandara, institute of Engineering and Technology 2019’s vol. 4, no. 5 of the international journal of Innovations inEngineering and Science. [Google Scholar]
  8. Optimal aggregation method for fraud detection andprevention in mobile apps, International journal of advanced research in computer science and software engineering, no. 8, March 2016. Pratik Phapale, Pratik Sapkal, Dr. Swati Jaiswal, Laxman Kuhile, and Vivek Pingale. https://www.semanticscholar.org/paper/Fraud-Detection-%26-Prevention-of-Mobile-Apps-using-Pingale-Kuhile/33960b8f62de8811d349d8bdbe2c8c36648b5cd7 [Google Scholar]
  9. Valence arousal similarity-based recommendation services, IEEE international conference on Circuit, Power andComputing technologies, ICCPCT 2015. Dr. R. Subhashini and Akila, G. https://www.semanticscholar.org/paper/Valence-arousal-similarity-based-recommendation-Subhashini-Akila/c362fd9e96bac69d73deee614e59ff31730e151b [Google Scholar]
  10. Android malware detection using parallel machine learning classifiers, 8th international conference on next generation mobile apps, services and technology, September 2014. Suleiman Y. Yerima, Sakir Sezer, and Igor Muttik. [Google Scholar]
  11. M. M. Mhatre, M. S. Mhatre, M. D. Dhemre, and P. S. T. V., “Detection of ranking fraud in mobile applications,” pp. 2187-2191, 2018. https://www.sciencedirect.com/science/article/abs/pii/S1549963409001154 [Google Scholar]
  12. P. Rohini, K. Pallavi, J. Pournima, K. Kucheta, and P. P. Agarkar, “Mob safe: forensic analysis for Android applications and detection of fraud apps using cloud stack anddata mining,” vol. 4, no. 10, pp. 3779–3782, 2015. https://issuu.com/irjet/docs/irjet-v6i2395/3 [Google Scholar]
  13. Gladence, L. Mary, M. Karthi, and V. Maria Anu. “Astatistical comparison of logistic regression and differentbayes classification methods for machine learning.” arpnJournal of Engineering and Applied Sciences 10, No. 14 (2015): 5947-5953. https://www.researchgate.net/publication/282921131 A statistical comparison of logistic regression and different bayes classification methods for machine learning [Google Scholar]
  14. Neha M. Puram and Kavita R. Singh, “Semantic analysisof app review for fraud detection using fuzzy logic”, International Journal of Computer & Mathematical Sciences, vol. 7, January 2018. https://www.semanticscholar.org/paper/Semantic-Analysis-of-App-Review-for-Fraud-Detection-Puram-Singh/ed73761ad92b9c9914c8c5c780dc1b57ab6f49e8 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.