Open Access
Issue
ITM Web Conf.
Volume 56, 2023
First International Conference on Data Science and Advanced Computing (ICDSAC 2023)
Article Number 04002
Number of page(s) 12
Section Language & Image Processing
DOI https://doi.org/10.1051/itmconf/20235604002
Published online 09 August 2023
  1. V. E. Balas, B. K. Mishra, and R. Kumar, Eds., Handbook of deep learning in biomedical engineering: techniques and applications. London, United Kingdom; San Diego, CA, United States: Academic Press, 2021. [Google Scholar]
  2. X. Gu, Z. Shen, J. Xue, Y. Fan, and T. Ni, “Brain Tumor MR Image Classification Using Convolutional Dictionary Learning With Local Constraint,” Front. Neurosci., vol. 15, p. 679847, May 2021, DOI: 10.3389/fnins.2021.679847. [CrossRef] [Google Scholar]
  3. A. Younis, L. Qiang, C. O. Nyatega, M. J. Adamu, and H. B. Kawuwa, “Brain Tumor Analysis Using Deep Learning and VGG-16 Ensembling Learning Approaches,” Applied Sciences, vol. 12, no. 14, p. 7282, Jul. 2022, DOI: 10.3390/app12147282. [CrossRef] [Google Scholar]
  4. X.-X. Yin, L. Sun, Y. Fu, R. Lu, and Y. Zhang, “U-Net-Based Medical Image Segmentation,” Journal of Healthcare Engineering, vol. 2022, pp. 1–16, Apr. 2022, DOI: 10.1155/2022/4189781. [Google Scholar]
  5. Y. LeCun, Y. Bengio et al. “Convolutional networks for images, speech, and time series”, The handbook of brain theory and neural networks, vol. 3361, no. 10, p. 1995, 1995. [Google Scholar]
  6. Y. Cao, W. Zhou, M. Zang, D. An, Y. Feng, and B. Yu, “MBANet: A 3D convolutional neural network with multi-branch attention for brain tumor segmentation from MRI images,” Biomedical Signal Processing and Control, vol. 80, p. 104296, Feb. 2023, DOI: 10.1016/j.bspc.2022.104296. [CrossRef] [Google Scholar]
  7. K. Kamnitsas, W. Bai, E. Ferrante, S. McDonagh, M. Sinclair, N. Pawlowski, M. Rajchl, M. Lee, B. Kainz, D. Rueckert et al. “Ensembles of Multiple Models and Architectures for Robust Brain Tumor Segmentation” MICCAI Brain Lesion Workshop, 2017. [Google Scholar]
  8. A. Myronenko, “3D MRI brain tumor segmentation using autoencoder regularization,” 2018, DOI: 10.48550/ARXIV.1810.11654. [Google Scholar]
  9. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” 2015, DOI: 10.48550/ARXIV.1505.04597. [Google Scholar]
  10. S. Maqsood, R. Damaševičius, and R. Maskeliūnas, “Multi-Modal Brain Tumor Detection Using Deep Neural Network and Multiclass SVM,” Medicina, vol. 58, no. 8, p. 1090, Aug. 2022, DOI: 10.3390/medicina58081090. [CrossRef] [Google Scholar]
  11. U. Kose and J. Alzubi, Eds., “Deep Learning for Cancer Diagnosis”, vol. 908. Singapore: Springer Singapore, pp. 239-248, 2021. DOI: 10.1007/978-981-15-6321-8. [CrossRef] [Google Scholar]
  12. A. A. Pravitasari et al., “UNet-VGG16 with transfer learning for MRI- based brain tumor segmentation,” TELKOMNIKA, vol. 18, no. 3, p. 1310, Jun. 2020, DOI: 10.12928/telkomnika.v18i3.14753. [CrossRef] [Google Scholar]
  13. P. Mlynarski, H. Delingette, A. Criminisi, and N. Ayache, “3D convolutional neural networks for tumor segmentation using long-range 2D context,” Computerized Medical Imaging and Graphics, vol. 73, pp. 60–72, Apr. 2019, DOI: 10.1016/j.compmedimag.2019.02.001. [CrossRef] [Google Scholar]
  14. A. Nawaz, U. Akram, A. A. Salam, A. R. Ali, A. Ur Rehman, and J. Zeb, “VGG-UNET for Brain Tumor Segmentation and Ensemble Model for Survival Prediction,” in 2021 International Conference on Robotics and Automation in Industry (ICRAI), Rawalpindi, Pakistan, Oct. 2021, pp. 1-6. DOI: 10.1109/ICRAI54018.2021.9651367. [Google Scholar]
  15. D. Cheng and E. Y. Lam, “Transfer Learning U-Net Deep Learning for Lung Ultrasound Segmentation,” 2021, DOI: 10.48550/ARXIV.2110.02196. [Google Scholar]
  16. P. Shi, M. Duan, L. Yang, W. Feng, L. Ding, and L. Jiang, “An Improved U-Net Image Segmentation Method and Its Application for Metallic Grain Size Statistics,” Materials, vol. 15, no. 13, p. 4417, Jun. 2022, DOI: 10.3390/ma15134417 [CrossRef] [Google Scholar]
  17. K. H. Zou et al., “Statistical validation of image segmentation quality based on a spatial overlap index1,” Academic Radiology, vol. 11, no. 2, pp. 178–189, Feb. 2004, DOI: 10.1016/S1076-6332(03)00671-8 [CrossRef] [Google Scholar]
  18. M. A. Rahman and Y. Wang, “Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation,” in Advances in Visual Computing, vol. 10072, G. Bebis, R. Boyle, B. Parvin, D. Koracin, F. Porikli, S. Skaff, A. Entezari, J. Min, D. Iwai, A. Sadagic, C. Scheidegger, and T. Isenberg, Eds. Cham: Springer International Publishing, 2016, pp. 234-244. DOI: 10.1007/978-3-319-50835-1_22. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.