Open Access
Issue
ITM Web Conf.
Volume 56, 2023
First International Conference on Data Science and Advanced Computing (ICDSAC 2023)
Article Number 04004
Number of page(s) 10
Section Language & Image Processing
DOI https://doi.org/10.1051/itmconf/20235604004
Published online 09 August 2023
  1. P. K. Das, S. Meher, R. Panda, and A. Abraham, “A review of automatedmethods for the detection of sickle cell disease,” IEEE Rev. Biomed. Eng., vol. 13, pp. 309–324, Jan. 2020. [CrossRef] [Google Scholar]
  2. P. K. Mishra, S. Agrawal, R. Panda and A. Abraham, “A novel type-2 fuzzy C-means clustering for brain MR image segmentation,” IEEE Trans. Cybern., early access, Jun. 22, 2020, DOI: 10.1109/TCYB.2020.2994235. [Google Scholar]
  3. P. K. Das, P. Jadoun, and S. Meher, “Detection and classification of acute lymphocytic leukemia,” in Proc. IEEE-HYDCON, 2020, pp. 1–5. [Google Scholar]
  4. S. Agrawal, R. Panda, and A. Abraham, “A novel diagonal class entropy-based multilevel image thresholding using coral reef optimization,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 50, no. 11, pp. 4688–4696, Nov. 2020. [CrossRef] [Google Scholar]
  5. M. González-Hidalgo, F. A. Guerrero-Peña, S. Herold-García, A. Jaume-i-Capó, and P. D. Marrero-Fernández, “Red blood cell cluster separation from digital images for use in sickle cell disease,” IEEE J. Biomed. Health Inform., vol. 19, no. 4, pp. 1514–1525, Jul. 2015. [CrossRef] [Google Scholar]
  6. P. Rakshit and K. Bhowmik, “Detection of abnormal finding in human RBC in diagnosing sickle cell anaemia using image processing,” Procedía Technol., vol. 10, pp. 28–36, 2013. [CrossRef] [Google Scholar]
  7. O. C. Linares, B. Hamann, and J. B. Neto, “Segmenting cellular retinal images by optimizing super-pixels, multi-level modularity, and cell boundary representation,” IEEE Trans. Image Process., vol. 29, pp. 809–818, Oct. 2019. [Google Scholar]
  8. Bhuyan H. K., Chinmay Chakraborty, Explainable machine learning for data extraction across computational social system, IEEE Transactions on Computational Social Systems, pages: 1-15, 2022. [CrossRef] [Google Scholar]
  9. Bhuyan H. K., Ravi Vinay Kumar, An Integrated Framework with Deep learning for Segmentation and Classification of Cancer Disease, Int J. on Artificial Intelligence Tools (IJAIT), Vol. 32, No. 02, 2340002 (2023). [CrossRef] [Google Scholar]
  10. Hemanta Kumar Bhuyan, Chinmay Chakraborty, Subhendu Kumar Pani, Vinay Kumar Ravi, Feature and Sub-Feature Selection for Classification using Correlation Coefficient and Fuzzy model, IEEE Transaction on Engineering Management, Volume: 70, Issue: 5, May 2023. [Google Scholar]
  11. Bhuyan H. K., Ravi Vinay Kumar, Analysis of Sub-feature for Classification in Data Mining, IEEE Transaction on Engineering Management, 2021 (Published). [Google Scholar]
  12. Bhuyan H. K., M. Saikiran, Murchhana Tripathy, Ravi Vinayakumar, Wide-ranging approach-based feature selection for classification, Multimedia Tools and Applications, pages: 1-28, 2022. [Google Scholar]
  13. R. Ali et al., “Optic disk and cup segmentation through fuzzy broad learning system for glaucoma screening,” IEEE Trans. Ind. Informat., vol. 17, no. 4, pp. 2476–2487, Jan. 2021. [CrossRef] [Google Scholar]
  14. Z. Chen, T. Gao, B. Sheng, P. Li, and C. L. P. Chen, “Outdoor shadow estimating using multiclass geometric decomposition based on BLS,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 2152–2165, May 2020, DOI: 10.1109/TCYB.2018.2875983. [CrossRef] [Google Scholar]
  15. H. Guo, B. Sheng, P. Li and C. L. P. Chen, “Multiview high dynamic range image synthesis using fuzzy broad learn- ing system,” IEEE Trans. Cybern., early access, Aug. 30, 2019, DOI: 10.1109/TCYB.2019.2934823. [Google Scholar]
  16. D. K. Prasad, M. K. Leung, and C. Quek, “ElliFit: An unconstrained, non-iterative, least squares based geometric Ellipse Fitting method,” Pattern Recognit., vol. 46, no. 5, pp. 1449–1465, 2013. [CrossRef] [Google Scholar]
  17. Z. Y. Liu and H. Qiao, “Multiple ellipses detection in noisy environ- ments: A hierarchical approach,” Pattern Recognit., vol. 42, no. 11, pp. 2421–2433, 2009. [CrossRef] [Google Scholar]
  18. S. Zafari, T. Eerola, J. Sampo, H. Kalviainen, and H. Haario, “Segmentation of overlapping elliptical objects in silhouette images,” IEEE Trans. Image Process., vol. 24, no. 12, pp. 5942–5952, Dec. 2015. [CrossRef] [MathSciNet] [Google Scholar]
  19. R. M. Haralick, S. Zhuang, C. Lin, and J. S. J. Lee, “The digital morphological sampling theorem,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 12, pp. 2067–2090, Dec. 1989. [CrossRef] [Google Scholar]
  20. G. Loy and A. Zelinsky, “Fast radial symmetry for detecting points of interest,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 8, pp. 959–973, Aug. 2003. [CrossRef] [Google Scholar]
  21. M. Pilu, A. W. Fitzgibbon, and R. B. Fisher, “Ellipse-specific direct least-square fitting,” in Proc. Int. Conf. Image Process. (ICIP), vol. 3, 1996, pp. 599-602. [Google Scholar]
  22. C. Meng, Z. Li, X. Bai, and F. Zhou, “Arc adjacency matrix-based fast ellipse detection,” IEEE Trans. Image Process., vol. 29, pp. 4406–4420, Feb. 2020. [CrossRef] [MathSciNet] [Google Scholar]
  23. Bhuyan H. K., Ravi Vinayakumar, M. Srikanth Yadav, Multi-objective optimization-based privacy in data mining, Cluster computing (Springer), Vol- 25, issue- 6, pages 4275-4287 (2022). [CrossRef] [Google Scholar]
  24. Bhuyan H. K., Kamila N. K., Pani S. K., Individual privacy in data mining using fuzzy optimization, Engineering Optimization, Taylor & Francis, Vol. 54, Issue 8, pp. 1305-1323, 2022. [CrossRef] [MathSciNet] [Google Scholar]
  25. Bhuyan H. K., Ravi Vinayakumar Ravi, Biswajit Brahma, Nilayam Kumar Kamila, Disease analysis using machine learning approaches in healthcare system, Health and Technology, Vol. 12, Issue 5, pages: 987-1005, 2022. [CrossRef] [Google Scholar]
  26. Chinmay Chakraborty, K. Mishra, S. K. Majhi, Bhuyan H. K., Intelligent Latency-aware tasks prioritization and offloading strategy in Distributed Fog-Cloud of Things, IEEE Transactions on Industrial Informatics, VOL. 19, NO. 2, February 2023. [Google Scholar]
  27. A. Vijayaraj, Bhuyan H. K., P.T. Vasanth Raj, M. Vijay Anand, Congestion Avoidance Using Enhanced Blue Algorithm, Wireless Personal Communications 128 (3), 1963-1984 2023. [CrossRef] [Google Scholar]
  28. X. Jingbo, L. Bo, L. Haijun, and L. Jianxin, “A new method for realizingLOG filter in image edge detection,” in Proc. 6th Int. Forum Strategic Technol., 2011, pp. 733–737. [Google Scholar]
  29. H. Xu, C. Lu, R. Berendt, N. Jha, and M. Mandal, “Automatic nuclear detection based on generalized Laplacian of Gaussian filters,” IEEE J. Biomed. Health Inform., vol. 21, no. 3, pp. 826–837, May 2017. [CrossRef] [Google Scholar]
  30. A. Z. Chitade, and S. K. Katiyar, “Colour based image segmentation using k-means clustering,” Int. J. Eng. Sci. Technol., vol. 2, no. 10, pp. 5319–5325, 2010. [Google Scholar]
  31. H. Yadav, P. Bansal, and R. K. Sunkaria, “Color dependent k-means clustering for color image segmentation of colored medical images,” in Proc. 1st Int. Conf. Next Gener. Comput. Technol. (NGCT), 2015, pp. 858–862. [Google Scholar]
  32. Erythrocyte IDB Database. Accessed: Oct. 2017. [Online]. Available: http://erythrocytesidb.uib.es/ [Google Scholar]
  33. R. D. Labati, V. Piuri, and F. Scotti, “All-IDB: The acute lymphoblastic leukemia image database for image processing,” in Proc. IEEE Int. Conf. Image Processing (ICIP), 2015, pp. 2045–2048. [Google Scholar]
  34. Medical Image and Signal Processing Research Center. Accessed: Nov. 2014. [Online]. Available: https://misp.mui.ac.ir/en/database [Google Scholar]
  35. A. Khadidos, V. Sanchez, and C.-T. Li, “Weighted level set evolution based on local edge features for medical image segmentation,” IEEE Trans. Image Process., vol. 26, no. 4, pp. 1979–1991, Apr. 2017. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.