Open Access
Issue
ITM Web Conf.
Volume 56, 2023
First International Conference on Data Science and Advanced Computing (ICDSAC 2023)
Article Number 05010
Number of page(s) 11
Section Machine Learning & Neural Networks
DOI https://doi.org/10.1051/itmconf/20235605010
Published online 09 August 2023
  1. Dr. Shuai Zhang (Member, IEEE), Chong Wang (Member, IEEE), Shing-Chow Chan (Member, IEEE), Xiguang Wei, and Check-Hei Ho, “New Object Detection, Tracking, and Recognition Approaches for Video Surveillance Over Camera Network”, IEEE SENSORSJOURNAL, Vol. 15, Pages 2679-2692, 2015. [CrossRef] [Google Scholar]
  2. Radhika Kamath, Mamatha Balachandra (Member, IEEE), and Srikanth Prabhu (Member, IEEE), “Raspberry Pi as Visual Sensor Nodes in Precision Agriculture: A Study”, IEEE Access, Vol. 7, Pages 45110-45122, 2019. [CrossRef] [Google Scholar]
  3. Sachin Umesh Sharma, Dharmesh J. Shah, “A PracticalAnimal Detection and Collision Avoidance System Using Computer Vision Technique”, IEEE Access, Pages 347-359, 2017. [CrossRef] [Google Scholar]
  4. Xing Wang, Tingfa Xu, Jizhou Zhang, Sining Chen, Yizhou Zhang, “SO-YOLO Based WBC Detection with Fourier Ptychographic Microscopy”, IEEE Access, Vol. 6, Pages 51566-51576, 2018. [CrossRef] [Google Scholar]
  5. Bastian Leibe, Konrad Schindler, Nico Cornelis, Luc Van Gool, “Coupled Object Detection and Tracking from Static Cameras and Moving Vehicles”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 30, Pages 1683-1698, 2008. [CrossRef] [Google Scholar]
  6. Jun Nishimura, Tadahiro Kuroda, “Versatile Recognition Using Haar-Like Feature and CascadedClassifier”, IEEE Sensors Journal, Vol. 10, Pages 942-951, 2010. [CrossRef] [Google Scholar]
  7. Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, “You Only Look Once: Unified, Real-Time Object Detection”, IEEE Paper, Volume, Pages 10, 2016. [Google Scholar]
  8. Chen X., Yuille A.L. A time-efficient cascade for real- time object detection: With applications for the visually impaired. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)-Workshops 2005 Sep 21: 28-28. [CrossRef] [Google Scholar]
  9. Zhang L., Towsey M., Xie J., Zhang J., Roe P. Using multi-label classification for acoustic pattern detection and assisting bird species surveys. Applied Acoustics. 2016 Sep 1; 110:91-8. [CrossRef] [Google Scholar]
  10. Ando B. A smart multisensor approach to assist blind people in specific urban navigation tasks. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2008 Aug 15; 16(6):592-4. [CrossRef] [Google Scholar]
  11. Andò B., Graziani S. Multisensor strategies to assist blind people: A clear-path indicator. IEEE Transactions on Instrumentation and Measurement. 2009 Apr 24;58(8):2488-94. [CrossRef] [Google Scholar]
  12. Yang X., Tian Y. Robust door detection in unfamiliar environments by combining edge and corner features. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops 2010 Jun 13:57-64. [Google Scholar]
  13. Hasanuzzaman F.M., Yang X., Tian, Y. Robust and effective component-based banknote recognition for the blind. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 2012 Jan 18; 42(6): 1021-30. [CrossRef] [Google Scholar]
  14. Lee Y.J., Ghosh J., Grauman K. Discovering important people and objects for egocentric video summarization. In 2012 IEEE conference on computer vision and pattern recognition 2012 Jun 16: 1346-1353. [CrossRef] [Google Scholar]
  15. Pirsiavash H., Ramanan D. Detecting activities of dailyliving in first-person camera views. In 2012 IEEE conference on computer vision and pattern recognition 2012 Jun 16:2847-2854. [CrossRef] [Google Scholar]
  16. Cadena C., Dick A., Reid ID. A fast, modular scene understanding system using context- aware object detection. In 2015 IEEE International Conference on Robotics and Automation (ICRA) 2015 May 26: 4859-4866. [CrossRef] [Google Scholar]
  17. Mekhalfi M.L., Melgani F., Bazi Y., Alajlan N. A compressive sensing approach to describe indoor scenes for blind people. IEEE Transactions on Circuitsand Systems for Video Technology. 2014 Nov 20; 25(7):1246-57. [Google Scholar]
  18. Phanikrishna C., Reddy A.V. Contour tracking based knowledge extraction and object recognition using deeplearning neural networks. In 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) 2016 Oct 14: 352-354. [CrossRef] [Google Scholar]
  19. VikkyMohane, Prof. Chetan Gode “Object Recognitionfor Blind people Using Portable Camera” World Conference on Futuristic Trends in Research and Innovation for Social Welfare (WCFTR’16) 2016. [Google Scholar]
  20. N. Deepika and J. M. Gnanasekar, “Intelligent Tool for Persons with Visual Impairments: An Overview,” 2022 8th International Conference on Smart Structures and Systems (ICSSS), Chennai, India, 2022, pp. 1-5, DOI: 10.1109/ICSSS54381.2022.9782199. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.