Open Access
Issue |
ITM Web Conf.
Volume 56, 2023
First International Conference on Data Science and Advanced Computing (ICDSAC 2023)
|
|
---|---|---|
Article Number | 05019 | |
Number of page(s) | 12 | |
Section | Machine Learning & Neural Networks | |
DOI | https://doi.org/10.1051/itmconf/20235605019 | |
Published online | 09 August 2023 |
- Soia, O. Konnikova, and E. Konnikov, “The Internet of Things,” Proc. 33rd Int. Bus. Inf. Manag. Assoc. Conf. IBIMA 2019 Educ. Excell. Innov. Manag. through Vis. 2020, no. June, pp. 8587-8591, 2019, DOI: 10.4018/ijhiot2018010101. [Google Scholar]
- Ye Liu, Xiaoyuan Ma, Lei Shu, Gerhard Petrus Hancke and Adnan M. Abu-Mahfouz, “From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges,” vol. 17, no. 6, pp. 4322–4334, 2021. [Google Scholar]
- N. Zhang, M. Wang, and N. Wang, “Precision agriculture - A worldwide overview,” Comput. Electron. Agric., vol. 36, no. 2-3, pp. 113-132, 2002, DOI: 10.1016/S0168-1699(02)00096-0. [CrossRef] [Google Scholar]
- Manishkumar Dholu and Mrs. K. A. Ghodinde, “Internet of Things (IoT) for Precision Agriculture Application”, Proceedings of the 2nd International Conference on Trends in Electronics and Informatics (ICOEI 2018) IEEE Conference Record: # 42666; IEEE Xplore ISBN: 978-1-5386-3570-4. [Google Scholar]
- M. T. Batte and M. R. Ehsani, “The economics of precision guidance with auto-boom control for farmer-owned agricultural sprayers,” Comput. Electron. Agric., vol. 53, no. 1, pp. 28–44, 2006, DOI: 10.1016/j.compag.2006.03.004. [CrossRef] [Google Scholar]
- R. M. M., J. Denny, and M. Gokilavani Asst Professor, “Recent Survey on Iot Application: Smart Agriculture,” Recent Surv. IOT Appl. Smart Agric. IJIRAE Int. J. Innov. Res. Adv. Eng., vol. 6, no. 05, pp. 341-344, 2019, DOI: 10.26562/IJIRAE.2019.MYAE10081. [Google Scholar]
- M. H. Aghkhani, M. H. Abbaspour-Fard, and I. Saedi, “Automated Steering System of Tractor and Other Self-propelled Agricultural Machineries, Using Visible Cable,” 2th Int. Conf. Sci. Technol. (ICSTIE, 2008). Appl. Educ., no. June 2014, pp. 57-70, 2008. [Google Scholar]
- M. Medici et al., “A web-tool for calculating the economic performance of precision agriculture technology,” Comput. Electron. Agric., vol. 181, no. November 2020, p. 105930, 2021, DOI: 10.1016/j.compag.2020.105930. [CrossRef] [Google Scholar]
- C. Kempenaar and T. Been, “Advances in Variable Rate Technology Application in Potato in The Netherlands,” 2018. [Google Scholar]
- W. H. Maes and K. Steppe, “Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture,” Trends Plant Sci., vol. 24, no. 2, pp. 152–164, 2019, DOI: 10.1016/j.tplants.2018.11.007. [CrossRef] [Google Scholar]
- P. Singh et al., “Hyperspectral remote sensing in precision agriculture: present status, challenges, and future trends”. LTD, 2020. [Google Scholar]
- N. Zhang, M. Wang, and N. Wang, “Precision agriculture - A worldwide overview,” Comput. Electron. Agric., vol. 36, no. 2-3, pp. 113-132, 2002, DOI: 10.1016/S0168-1699(02)00096-0. [CrossRef] [Google Scholar]
- A. Sharma, A. Jain, P. Gupta, and V. Chowdary, “Machine Learning Applications for Precision Agriculture: A Comprehensive Review,” IEEE Access, vol. 9, pp. 4843–4873, 2021, DOI: 10.1109/ACCESS.2020.3048415. [CrossRef] [Google Scholar]
- Abbas, Irfan, Jizhan Liu, Muhammad Faheem, Rana Shahzad Noor, Sher Ali Shaikh, Kashif Ali Solangi, and Syed Mudassir Raza. 2020. “Jo Ur l P Re Of.” Sensors & Actuators: A. Physical 112265. DOI: 10.1016/j.sna.2020.112265. [Google Scholar]
- https://www.rfpage.com/what-are-the-major-components-of-internet-of-things/. [Google Scholar]
- M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A. Naeem, “A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming,” IEEE Access, vol. 7, pp. 156237–156271, 2019, DOI: 10.1109/ACCESS.2019.2949703. [CrossRef] [Google Scholar]
- X. Feng, F. Yan, and X. Liu, “Study of Wireless Communication Technologies on Internet of Things for Precision Agriculture,” Wirel. Pers. Commun., vol. 108, no. 3, pp. 1785–1802, 2019, DOI: 10.1007/s11277-019-06496-7. [CrossRef] [Google Scholar]
- N. M. Kumar and P. K. Mallick, “The Internet of Things: Insights into the building blocks, component interactions, and architecture layers,” Procedía Comput. Sci., vol. 132, pp. 109–117, 2018, DOI: 10.1016/j.procs.2018.05.170. [CrossRef] [Google Scholar]
- I. Z. Ramdinthara and P. Shanthi Bala, “A comparative study of IoT technology in precision agriculture,” 2019 IEEE Int. Conf. Syst. Comput. Autom. Networking, ICSCAN 2019, 2019, DOI: 10.1109/ICSCAN.2019.8878718. [Google Scholar]
- https://teks.co.in/site/blog/precision-agriculture-top-15-chaUenges-and-issues/. [Google Scholar]
- J. V. Sta, “Implementing Precision Agriculture in the 21st Century,” pp. 267-275, 2000, DOI: 10.1006/jaer.2000.0577. [Google Scholar]
- A. Khanna and S. Kaur, “Evolution of Internet of Things (IoT) and its significant impact in the field of Precision Agriculture,” Comput. Electron. Agric., vol. 157, no. November 2018, pp. 218-231, 2019, DOI: 10.1016/j.compag.2018.12.039. [CrossRef] [Google Scholar]
- A. Liberati et al., “Enhanced Reader.pdf,” Nature, vol. 388. pp. 539-547, 2018. [Google Scholar]
- Abbas, Irfan, Jizhan Liu, Muhammad Faheem, Rana Shahzad Noor, Sher Ali Shaikh, Kashif Ali Solangi, and Syed Mudassir Raza. 2020. “Jo Ur l P Re Of.” Sensors & Actuators: A. Physical 112265. DOI: 10.1016/j.sna.2020.112265. [Google Scholar]
- Ahmed, Nurzaman, Debashis De, and Iftekhar Hussain. 2018. “Internet of Things (IoT) for Smart Precision Agriculture and Farming in Rural Areas.” IEEE Internet of Things Journal 5(6):4890-99. DOI: 10.1109/JIOT.2018.2879579. [CrossRef] [Google Scholar]
- Kungumaselvan, T., V. Mohanraj, and Katiki Srikar. 2020. “Challenges in Adopting Precision Farming Technologies.” 1(4):83-85. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.