Open Access
Issue
ITM Web Conf.
Volume 57, 2023
Fifth International Conference on Advances in Electrical and Computer Technologies 2023 (ICAECT 2023)
Article Number 01013
Number of page(s) 10
Section Software Engineering & Information Technology
DOI https://doi.org/10.1051/itmconf/20235701013
Published online 10 November 2023
  1. Bala´zs, B. Z., Geier, N., Taka´cs, M., Davim, J. P. (2021). A review on micromilling: recent advances and future trends. The International Journal of Advanced Manufacturing Technology, 112(3), 655-684 [CrossRef] [Google Scholar]
  2. Reichenbach, I. G., Bohley, M., Sousa, F. J., Aurich, J. C. (2018). Micromachining of PMMA—manufacturing of burr-free structures with single-edge ultra-small micro end mills. The International Journal of Advanced Manufacturing Technology, 96(9), 3665-3677. [CrossRef] [Google Scholar]
  3. Guckenberger, D. J., De Groot, T. E., Wan, A. M., Beebe, D. J., Young, W. (2015). Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab on a Chip, 15(11), 2364-2378. [CrossRef] [Google Scholar]
  4. Riego, V., Sa´nchez-Gonza´lez, L., Ferna´ndez-Robles, L., Gutie´rrezFerna´ndez, A., Strisciuglio, N. (2021). Burr detection and classification using RUSTICO and image processing. Journal of computational science, 56, 101485 [CrossRef] [Google Scholar]
  5. Ko, S. L., Dornfeld, D. A. (1991). A study on burr formation mechanism [Google Scholar]
  6. Wu, M., Chen, L. (2015, November). Image recognition based on deep learning. In 2015 Chinese Automation Congress (CAC) (pp. 542-546). IEEE. [Google Scholar]
  7. Shamsaldin, A. S., Fattah, P., Rashid, T. A., Al-Salihi, N. K. (2019). A study of the convolutional neural networks applications. UKH Journalof Science and Engineering, 3(2), 31-40. [CrossRef] [Google Scholar]
  8. Sun, Y., Zhu, L., Wang, G., Zhao, F. (2017). Multi-input convolutional neural network for flower grading. Journal of Electrical and Computer Engineering, 2017. [Google Scholar]
  9. LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. nature, 521 (7553), 436-444. [Google Scholar]
  10. Hamid, N. A., Sjarif, N. N. A. (2017). Handwritten recognition using SVM, KNN and neural network. arXiv preprint arXiv:1702.00723. [Google Scholar]
  11. Hijazi, S., Kumar, R., Rowen, C. (2015). Using convolutional neural networks for image recognition. Cadence Design Systems Inc.: San Jose, CA, USA, 9, 1. [Google Scholar]
  12. Fujiyoshi, H., Hirakawa, T., Yamashita, T. (2019). Deep learning-based image recognition for autonomous driving. IATSS research, 43(4), 244-252. [CrossRef] [Google Scholar]
  13. Lee, S. H., Dornfeld, D. A. (2007). Prediction of burr formation during face milling using an artificial neural network with optimized cutting conditions. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(12), 1705-1714. [CrossRef] [Google Scholar]
  14. Hossain, M. A., Sajib, M. S. A. (2019). Classification of image using convolutional neural network (CNN). Global Journal of Computer Science and Technology, 19(D2), 13-18. [Google Scholar]
  15. Haritha, D., Swaroop, N., Mounika, M. (2020, October). Prediction of COVID-19 Cases Using CNN with X-rays. In 2020 5th International Conference on Computing, Communication and Security (ICCCS) (pp. 1-6). [Google Scholar]
  16. Koichi Ito, Hiroya Kawai, Takehisa OkanoTakafumi Aoki, “Age and Gender Prediction from Face Images Using Convolutional Neural Net-work”, APSIPAASC 2018, pp. 978-988-14768-5-2 [Google Scholar]
  17. Jain, M., Tomar, P. S. (2013). Review of image classification methods and techniques. International journal of engineering research and technology, 2(8), 852-858. [Google Scholar]
  18. Szegedy, C., Toshev, A., Erhan, D. (2013). Deep neural networks for object detection. Advances in neural information processing systems, 26. [Google Scholar]
  19. https://medium.com/@aschandinip/resnet-34-50-101-what-actually-it-is-c63da24ba695. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.