Open Access
Issue |
ITM Web Conf.
Volume 59, 2024
II International Workshop “Hybrid Methods of Modeling and Optimization in Complex Systems” (HMMOCS-II 2023)
|
|
---|---|---|
Article Number | 02006 | |
Number of page(s) | 9 | |
Section | Interdisciplinary Mathematical Modeling and Applications | |
DOI | https://doi.org/10.1051/itmconf/20245902006 | |
Published online | 25 January 2024 |
- D.V. Kiryanov, Mathcad 15/Mathcad Prime 1.0 (BHV-Petersburg, St. Petersburg, 2012) [Google Scholar]
- A. Polovko, Derive for a student (BHI-Petersburg, St. Petersburg, 2005) [Google Scholar]
- A.Yu. Golubkov, A.I. Zobnin, O.V. Sokolova, Computer algebra in the Sage system (MSTU named after N.E. Bauman, Moscow, 2013) [Google Scholar]
- V.A. Dalinger, S.D. Simonzhenkov, Computer Science and Mathematics. Solving equations and optimization in Matcad and Maple (Urayt, Moscow, 2023) [Google Scholar]
- M.B. Monagan, K.O. Geddes, K.M. Heal, G. Labahn, S.M. Vorkoetter, J. McCarron, and P. DeMarco, Maple Introductory, Programming Guide (Maplesoft, a division of Waterloo Maple Inc., 2009) [Google Scholar]
- N.A. Vavilov, V.G. Khalin, A.V. Yurkov, Mathematica for non-mathematicians (Electronic edition, MTsNMO, Moscow, 2021) [Google Scholar]
- R.J. Lopez, Maple via Calculus: A Tutorial Approach (Springer Science & Business Media, 2012) [Google Scholar]
- H. Hamid, N. Angkotasan, A. Jalal, D. Muhtadi, Sukirwan, J. Phys.: Conf. Ser. 1613, 0120252020 (2009) [Google Scholar]
- Y.L. Ningsih, R. Paradesa, J. Phys.: Conf. Ser. 948, 012034 (2018) [CrossRef] [Google Scholar]
- J.L. Pardo Gómez, Introduction to Cryptography with Maple (Springer, New York, 2013) [Google Scholar]
- R.E. Klima, N.P. Sigmon, Cryptology: Classical and Modern with Maplets (Chapman & Hall/CRC, New York, 2012) [CrossRef] [Google Scholar]
- M. Durcheva, E. Nikolova, AIP Conference Proceedings, 2048(1), 060010 (2018) [CrossRef] [Google Scholar]
- M. Durcheva, E. Varbanova, Math.Comput.Sci. 11, 305–314 (2017) [CrossRef] [MathSciNet] [Google Scholar]
- A.A. Olenev, L.G. Zvereva, T.H. Saieg, Journal of Higher Education Theory and Practice 22(8), 51–57 (2022) [Google Scholar]
- N.A. Kolomeets, A.V. Pavlov, Computational methods in discrete mathematics. Appendix 4, 67–68 (2011) [Google Scholar]
- I.S. Lartsov, Software package for working with Boolean algebra [Electronic resource]. Laboratory work. Faculty of Computational Mathematics and Cybernetics. Nizhny Novgorod State University named after. N.I. Lobachevsky. Nizhny Novgorod (2011). irror.transact.net.au/sourceforge/t/project/ta/tablecloth/…/1…/otchet.pdf. [Google Scholar]
- A.A. Olenev, I.A. Kalmykov, K.A. Kirichek, I.A. Provornov, A program for visualizing the construction of perfect normal forms of logic algebra formulas. Certificate of registration of a computer program, 2023614273 (2023) [Google Scholar]
- K.A. Kirichek, E.V. Potekhina, Program for visualization of basic logical operations. Certificate of registration of the computer program, 2021613965 (2021) [Google Scholar]
- A.A. Olenev, I.A. Kalmykov, K.A. Kirichek, Software & Systems 36(3), 349–360 (2023) [CrossRef] [Google Scholar]
- K.H. Rosen, Discrete mathematics and its applications (McGraw-Hill, New York, 2012) [Google Scholar]
- A. Shingareva, C. Lizarraga-Celaya, Maple and Mathematica. A Problem Solving Approach for Mathematics (Springer-Verlag, New York, 2009) [CrossRef] [Google Scholar]
- V.A. Gorbatov, Fundamental foundations of discrete mathematics (Nauka, Moscow, 2000) [Google Scholar]
- O.P. Kuznetsov, Discrete mathematics for the engineer (Lan, St. Petersburg, 2009) [Google Scholar]
- O.A. Logachev, A.A. Salnikov, V.V. Yashchenko, Boolean functions in coding theory and cryptology (MTsNMO, Moscow, 2004) [Google Scholar]
- V.P. Suprun, Cybernetics 1, 116–117 (1987) [Google Scholar]
- G. Borowik, G. Labiak, A. Bukowiec, FSM-Based Logic Controller Synthesis in Programmable Devices with Embedded Memory Blocks (Springer, London, 2015) [Google Scholar]
- V. Riznyk, M. Solomko, P. Tadeyev, V. Nazaruk, L. Zubyk, V. Voloshyn, Eastern- European Journal of Enterprise Technologies 3/4(105)), 43–60 (2020) [CrossRef] [Google Scholar]
- S. Baranov, A. Karatkevich, Int. Journal of electronics and telecommunications 64(3), 373–378 (2018) [Google Scholar]
- M. Maxfield, Implementing Logic Functions Using Only NAND or NOR Gates (2018). https://www.eeweb.com/implementing-logic-functions-using-only-nand-or-nor-gates/ [Google Scholar]
- E.H. Shaik, N. Rangaswamy, Journal of Optics 47(1), 1–14 (2017) [Google Scholar]
- V. Riznyk, M. Solomko, Technology Audit and Production Reserves 5/2(43)), 42–55 (2018) [CrossRef] [Google Scholar]
- V. Riznyk, M. Solomko, Technology Audit and Production Reserves 6(2(38)), 60–76 (2017) [CrossRef] [Google Scholar]
- A.A. Olenev, E.M. Petlina, A.V. Shuvaev, N.V. Grivennaya, A.N. Khabarov, Maple Information Tools in the Study of Mathematical Logic Questions. In P. Stanimorovic, A. A. Stupina, E. Semenkin, & I.V. Kovalev (Eds.), Hybrid Methods of Modeling and Optimization in Complex Systems, vol. 1. European Proceedings of Computers and Technology. European Publisher. 22-24 November 2022, Krasnoyarsk, Russia (2023) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.