Open Access
ITM Web Conf.
Volume 59, 2024
II International Workshop “Hybrid Methods of Modeling and Optimization in Complex Systems” (HMMOCS-II 2023)
Article Number 03001
Number of page(s) 7
Section Data Mining, Machine Learning and Patern Recognition
Published online 25 January 2024
  1. T. Graepel, J. Candela, T. Borchert, R. Herbrich, Web-Scale Bayesian click-through rateprediction for sponsored search advertising in Microsoft’s Bing search engine, in Proceedings of 27th International Conference on Machine Learning, 13–20 (2010) [Google Scholar]
  2. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning (Springer, 2014) [Google Scholar]
  3. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006) [Google Scholar]
  4. L.P. Coelho, V. Richard, Building machine learning systems in Python (Packt Publishing, 2016) [Google Scholar]
  5. T. Bayes, An essay, towards solving a problem in the doctrine of chances (Philos Trans RSoc Lond, 1763) [Google Scholar]
  6. R. Pirmagomedov, D. Moltchanov, A. Ometov, Kh. Muhammad, S. Andree, Ye. Koucheryavy, IEEE Access 7, 180700–180712 (2019) [CrossRef] [Google Scholar]
  7. J. Demsar, Journal of Machine Learning Research 7, 1–30 (2006) [Google Scholar]
  8. A. Smola, B. Scholkopf, Statistics and Computing 14, 199–222 (2004) [CrossRef] [Google Scholar]
  9. Xu Rui, D. Wunsch, IEEE Transactions on neural networks 16(3), 645–678 (2005) [CrossRef] [Google Scholar]
  10. M. Chen, Sh. Mao, Yu. Mobile, Networks and Applications 19, 171–209 (2014) [CrossRef] [Google Scholar]
  11. Ya. LeCun, Yo. Bengio, G. Hinton, Nature 521(7553), 436–444 (2015) [CrossRef] [PubMed] [Google Scholar]
  12. A.A. Kuzmenko, D.E. Kondrashin, Ergodesign 4(6), 230–240 (2019) [CrossRef] [Google Scholar]
  13. A.A. Kuzmenko, A.V. Averchenkov, A.S. Sazonova, Neural network analysis of ecological and floral classification as a basis for protection of regional biodiversity, in the collection: IOP Conference Series: Materials Science and Engineering 753, 042029 (2020) [Google Scholar]
  14. A.A. Kuzmenko, S. Kondratenko, K. Dergachev and V. Spasennikov, Ergonomic support for logo development based on deep learning, in the proceedings: PROCEEDINGS of the seminar CEUR 30. Ser. "Graphics in 2020 - Proceedings of the 30th International Conference on Computer Graphics and Machine Vision" 2744 (2020) [Google Scholar]
  15. D.R. Kalugin, Yu.A. Leonov, RA. Filippov, L.B. Filippova, Development of an information and analytical system for modeling the demographic situation in the russian federation, in the proceedings: III International Workshop on Modeling, Information Processing and Computing (MIP: Computing-2021), CEUR Workshop Proceedings 2899, 133–140 (2021) [Google Scholar]
  16. A.V. Ivanova, L.B. Filippova, Methods of text processing and machine learning when creating chatbots, in the proceedings: New Horizons. VIII scientific and practical conference with international participation. Collection of materials and reports, Bryansk, 289–292 (2021) [Google Scholar]
  17. D.I. Kopeliovich, R.A. Filippov, L.B. Filippova, E.O. Trubakov, Theoretical and methodological support for monitoring socio-economic systems using data warehouses in OLAP technology: monograph ( Direct-Media, Moscow, Berlin, 2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.